

Backend API Reference
This document provides a comprehensive overview of various configurations, controllers, and
middleware used in a backend application, primarily focused on API interactions, authentication,
migrations, organization management, project management (including content mapping), user
profiles, and authentication middleware. It details environment configurations, log file paths, how
to load environment variables, best practices for handling sensitive data, definitions of constants
for various application-wide settings, HTTP request handlers for different entities, and
middleware for authenticating users via JWT tokens. The documentation emphasizes
maintainability, consistency, and security in application development.

The `devConfig` object centralizes environment-specific API endpoints, application URLs, and log
file path configuration for development and testing purposes. This configuration is intended to be
imported and used throughout your codebase to ensure consistency and ease of maintenance.

1. `CS_API`

Contains the base URLs for the Contentstack API for different regions and cloud
providers. Use these endpoints to make API requests depending on the deployment
environment.

Keys:

- `NA`: North America (default/staging)

- `EU`: Europe (default/staging)

- `AZURE_NA`: North America on Azure cloud

- `GCP_NA`: North America on Google Cloud Platform

2. `CS_URL`

Contains the base URLs for the Contentstack web application for different regions and
cloud providers. Use these URLs to direct users to the appropriate Contentstack UI.

Keys:

- `NA`: North America (default)

- `EU`: Europe (default)

- `AZURE_NA`: North America on Azure cloud

- `AZURE_EU`: Europe on Azure cloud

- `GCP_NA`: North America on Google Cloud Platform

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

3. `LOG_FILE_PATH`

Specifies the path to the log file used by the application. The path is determined based
on the operating system to ensure compatibility:

- On Windows (`win32`), uses `.\\combine.log`

- On other platforms (Linux, macOS), uses `./combine.log`

- Environment Selection:

 Choose the appropriate API and URL keys based on the region and cloud provider your
application is targeting.

- Log File Path:

 Update the log file path if your application's logging requirements change or if you need
to store logs in a different location.

This configuration file is designed to be easily extendable. Add new regions, cloud
providers, or configuration keys as your infrastructure evolves.

Here is a documentation-style explanation for your `index.ts` configuration file. This
covers the purpose, structure, and usage of the file, as well as best practices and
important notes about environment variable management.

Configuration Module (`index.ts`)

This module is responsible for loading environment variables, selecting the appropriate
configuration based on the environment, and exporting a strongly-typed configuration
object for use throughout your application.

- Environment Variable Loading: Uses the `dotenv` package to load environment
variables from a file named according to the current `NODE_ENV` (e.g., `production.env`,
`development.env`).

- Type Safety:Defines a `ConfigType` TypeScript type to ensure all required configuration
values are present and correctly typed.

- Environment-Specific Config: Dynamically merges either `prodConfig` or `devConfig`
into the exported configuration object, depending on the value of `NODE_ENV`.

- The `.env` files should be named as `<NODE_ENV>.env` (e.g., `production.env`,
`development.env`).

- These files should **not** be committed to version control as they may contain
sensitive information.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Configuration Type

- Defines the shape of the configuration object.

- Ensures that all required configuration values are present and correctly typed.

Exported Configuration Object

- Sets static and environment-based configuration values.

- Uses the spread operator to merge in either `prodConfig` or `devConfig` based on the
current environment.

- The `!` (non-null assertion) is used to tell TypeScript that these environment variables
are guaranteed to be present.

Best Practices

- **Do not commit `.env` files** to version control. Add them to `.gitignore`.

- **Validate required environment variables** at startup to avoid runtime errors.

- **Use different `.env` files** for each environment (development, production, etc.).

- **Keep secrets and sensitive data** out of your codebase and only in environment
variables.

Troubleshooting

- Ensure the `.env` file for the current `NODE_ENV` exists in your project root.

- If a variable is `undefined`, check the spelling and presence in the `.env` file.

- The `dotenv` config should be called **before** any code that uses environment
variables.

Constants/index.ts

The constants/index.ts file serves as a centralized location for all application-wide
constants, configuration values, and enumerations used throughout the project. This approach
promotes maintainability, consistency, and ease of updates.

Overview
This file exports a variety of constants, including:

●​ Region and environment identifiers

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ API endpoints and URLs

●​ CMS types and project modules

●​ HTTP status codes and messages

●​ Validation error messages

●​ Project and content type statuses

●​ Locale mappings

●​ Configuration for migration data directories and files

Key Sections

Regions and URLs

●​ CS_REGIONS: Lists supported regions for the application.

●​ DEVURLS: Maps each region to its corresponding developer hub API URL.

CMS and Modules

●​ CMS: Enumerates supported CMS types.

●​ MODULES and MODULES_ACTIONS: Define available modules and their possible
actions.

HTTP Codes and Messages

●​ HTTP_CODES: Maps common HTTP status codes to descriptive names.

●​ HTTP_TEXTS: Provides user-friendly messages for various HTTP responses and
error scenarios.

●​ HTTP_RESPONSE_HEADERS: Default headers for API responses.

Validation and Error Handling

●​ VALIDATION_ERRORS: Standardized error messages for input validation.

●​ METHODS_TO_INCLUDE_DATA_IN_AXIOS: HTTP methods that should include a data
payload in Axios requests.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Project and Content Type Status

●​ PROJECT_STATUS, NEW_PROJECT_STATUS, PREDEFINED_STATUS,
PREDEFINED_STEPS: Enumerate possible project states and workflow steps.

●​ CONTENT_TYPE_STATUS: Enumerates content type mapping statuses.

Locale and Field Mapping

●​ LOCALE_MAPPER: Maps master and other locales between systems.

●​ POPULATE_CONTENT_MAPPER, POPULATE_FIELD_MAPPING,
CONTENT_TYPE_POPULATE_FIELDS: Fields used for populating related data in
queries.

Miscellaneous

●​ CHUNK_SIZE: Default chunk size for file operations.

●​ LIST_EXTENSION_UID: Unique identifier for a specific extension.

●​ KEYTOREMOVE: List of keys to be excluded or removed in certain operations.

●​ AFFIX_REGEX: Regular expression for validating project affixes.

Migration Data Configuration

●​ MIGRATION_DATA_CONFIG: Centralizes all directory and file names used for
migration data, backups, locales, webhooks, environments, content types,
marketplace apps, extensions, references, assets, entries, authors, categories, tags,
terms, posts, chunks, global fields, and export info.

Usage
Import any constant as needed in your modules:

import { CS_REGIONS, HTTP_CODES, HTTP_TEXTS } from '../constants'

This ensures that all parts of the application use the same values, reducing the risk of typos
and inconsistencies.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Maintenance
●​ Add new constants here as the application grows.

●​ Update values centrally to propagate changes throughout the codebase.

●​ Group related constants together and use clear, descriptive names.

Example
To check if a project is in a "Draft" state:

if (project.status === PROJECT_STATUS.DRAFT) {

 // handle draft logic

}

To get a user-friendly error message for a 401 response:

const message = HTTP_TEXTS.UNAUTHORIZED;

This file is a single source of truth for all static values and configuration keys, making the
codebase easier to manage and understand.

/src/controllers/auth.controller.ts

The auth.controller.ts file defines controller functions for handling authentication-related
HTTP requests in the application. These controllers act as intermediaries between incoming
Express requests and the authentication service logic.

Overview
This module exports the authController object, which contains methods for:

●​ Handling user login requests

●​ Handling requests to send SMS messages (e.g., for two-factor authentication)

Each controller method receives the Express Request and Response objects, delegates the
main logic to the authService, and sends the appropriate HTTP response.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Exported Controller Methods

1. login

Handles user login requests.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls authService.login(req) to perform authentication.

○​ Sends the response with the status and data returned by the service.

Usage Example:​
POST /api/auth/login

2. RequestSms

Handles requests to send an SMS, typically for authentication or verification purposes.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls authService.requestSms(req) to trigger the SMS sending logic.

○​ Sends the response with the status and data returned by the service.

Usage Example:​
POST /api/auth/request-sms

Example Usage

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Import and use the controller in your route definitions:

import { authController } from './controllers/auth.controller';

router.post('/login', authController.login);

router.post('/request-sms', authController.RequestSms);

src/controllers/migration.controller.ts

The migration.controller.ts file defines controller functions for handling
migration-related HTTP requests. These controllers serve as the interface between Express
routes and the migration service logic, managing the migration workflow for projects.

Overview
This module exports the migrationController object, which provides methods for:

●​ Creating and deleting test stacks

●​ Starting test and final migrations

●​ Retrieving migration logs

●​ Saving source locales and mapped locales

Each controller method receives the Express Request and Response objects, delegates the
main logic to the migrationService, and sends the appropriate HTTP response.

Exported Controller Methods

1. createTestStack

Creates a test stack for migration.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

○​ Calls migrationService.createTestStack(req) to create a test
stack.

○​ Responds with the status and data from the service.

2. deleteTestStack

Deletes an existing test stack.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls migrationService.deleteTestStack(req) to delete the test
stack.

○​ Responds with the result from the service.

3. startTestMigration

Initiates a test migration process.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls migrationService.startTestMigration(req) to start the test
migration.

○​ Responds with the result from the service.

4. startMigration

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Starts the final migration process.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls migrationService.startMigration(req) to start the final
migration.

○​ Responds with the result from the service.

5. getLogs

Retrieves migration logs for a project or stack.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls migrationService.getLogs(req) to fetch logs.

○​ Responds with the logs data.

6. saveLocales

Saves the source locales for a migration.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Process:

○​ Calls migrationService.createSourceLocales(req) to save
locales.

○​ Responds with the result.

7. saveMappedLocales

Saves or updates the mapped locales for a migration.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls migrationService.updateLocaleMapper(req) to update locale
mappings.

○​ Responds with the result.

Example Usage
Import and use the controller in your route definitions:

import { migrationController } from './controllers/migration.controller';

router.post('/test-stack', migrationController.createTestStack);

router.delete('/test-stack', migrationController.deleteTestStack);

router.post('/test-migration', migrationController.startTestMigration);

router.post('/migration', migrationController.startMigration);

router.get('/logs', migrationController.getLogs);

router.post('/locales', migrationController.saveLocales);

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

router.post('/mapped-locales', migrationController.saveMappedLocales);

src/controllers/org.controller.ts

The org.controller.ts file defines controller functions for handling organization and
stack-related HTTP requests. These controllers act as the interface between Express routes
and the organization service logic, managing operations such as stack management, locale
retrieval, and organization details.

Overview
This module exports the orgController object, which provides methods for:

●​ Retrieving all stacks in an organization

●​ Creating a new stack

●​ Fetching organization and stack locales

●​ Checking stack status

●​ Retrieving organization details

Each controller method receives the Express Request and Response objects, delegates the
main logic to the orgService, and sends the appropriate HTTP response.

Exported Controller Methods

1. getAllStacks

Retrieves all stacks associated with the organization.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

○​ Calls orgService.getAllStacks(req) to fetch stacks.

○​ Responds with the status and data from the service.

2. createStack

Creates a new stack within the organization.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls orgService.createStack(req) to create the stack.

○​ Responds with the status and data from the service.

3. getLocales

Retrieves the locales configured for the organization.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls orgService.getLocales(req) to fetch locales.

○​ Responds with the status and data from the service.

4. getStackStatus

Retrieves the status of a specific stack.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls orgService.getStackStatus(req) to get the stack status.

○​ Responds with the status and data from the service.

5. getStackLocale

Retrieves the locales for a specific stack.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls orgService.getStackLocale(req) to fetch stack locales.

○​ Responds with the status and data from the service.

6. getOrgDetails

Retrieves details about the organization.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls orgService.getOrgDetails(req) to fetch organization details.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

○​ Responds with the status and data from the service.

Example Usage
Import and use the controller in your route definitions:

import { orgController } from './controllers/org.controller';

router.get('/stacks', orgController.getAllStacks);

router.post('/stacks', orgController.createStack);

router.get('/locales', orgController.getLocales);

router.get('/stack-status', orgController.getStackStatus);

router.get('/stack-locales', orgController.getStackLocale);

router.get('/org-details', orgController.getOrgDetails);

src/controllers/projects.contentMapper.controller.ts

The projects.contentMapper.controller.ts file defines controller functions for
managing content mapping operations within projects. These controllers serve as the
interface between Express routes and the contentMapperService, handling requests related
to content types, field mappings, global fields, and content mapper updates.

Overview
This module exports the contentMapperController object, which provides methods for:

●​ Retrieving and updating content types and field mappings

●​ Managing test data and content type fields

●​ Handling global fields

●​ Resetting and removing content mappers

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Each controller method receives the Express Request and Response objects, delegates the
main logic to the contentMapperService, and sends the appropriate HTTP response.

Exported Controller Methods

1. putTestData

Updates test data for content mapping.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls contentMapperService.putTestData(req) to update test data.

○​ Responds with the status and data from the service.

2. getContentTypes

Retrieves available content types.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls contentMapperService.getContentTypes(req) to fetch
content types.

○​ Responds with the status and data from the service.

3. getFieldMapping

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Retrieves field mapping for a given request.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls contentMapperService.getFieldMapping(req) to fetch field
mapping.

○​ Responds with the status and data from the service.

4. getExistingContentTypes

Retrieves existing content types.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls contentMapperService.getExistingContentTypes(req) to
fetch existing content types.

○​ Responds with status 201 and the data from the service.

5. getExistingGlobalFields

Retrieves existing global fields.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Process:

○​ Calls contentMapperService.getExistingGlobalFields(req) to
fetch global fields.

○​ Responds with status 201 and the data from the service.

6. putContentTypeFields

Updates content type fields.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls contentMapperService.updateContentType(req) to update
fields.

○​ Responds with the status and data from the service.

7. resetContentType

Resets a content type to its initial mapping.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls contentMapperService.resetToInitialMapping(req) to
reset the mapping.

○​ Responds with the status and data from the service.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

8. removeContentMapper

Removes a content mapper.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls contentMapperService.removeContentMapper(req) to remove
the mapper.

○​ Responds with status 200 and the data from the service.

9. getSingleContentTypes

Retrieves a single content type.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls contentMapperService.getSingleContentTypes(req) to
fetch a single content type.

○​ Responds with status 201 and the data from the service.

10. getSingleGlobalField

Retrieves a single global field.

●​ Parameters:

○​ req: Express Request object

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

○​ res: Express Response object

●​ Process:

○​ Calls contentMapperService.getSingleGlobalField(req) to fetch
a single global field.

○​ Responds with status 201 and the data from the service.

11. updateContentMapper

Updates content mapping details for a project.

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls contentMapperService.updateContentMapper(req) to update
mapping details.

○​ Responds with the status and data from the service.

Example Usage
Import and use the controller in your route definitions:

import { contentMapperController } from
'./controllers/projects.contentMapper.controller';

router.put('/test-data', contentMapperController.putTestData);

router.get('/content-types', contentMapperController.getContentTypes);

router.get('/field-mapping', contentMapperController.getFieldMapping);

router.get('/existing-content-types',
contentMapperController.getExistingContentTypes);

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

router.get('/existing-global-fields',
contentMapperController.getExistingGlobalFields);

router.put('/content-type-fields',
contentMapperController.putContentTypeFields);

router.post('/reset-content-type',
contentMapperController.resetContentType);

router.delete('/content-mapper',
contentMapperController.removeContentMapper);

router.get('/single-content-type',
contentMapperController.getSingleContentTypes);

router.get('/single-global-field',
contentMapperController.getSingleGlobalField);

router.put('/update-content-mapper',
contentMapperController.updateContentMapper);

src/controllers/projects.controller.ts

The projects.controller.ts file defines controller functions for managing project-related
operations. These controllers act as the interface between Express routes and the
projectService, handling requests for creating, updating, retrieving, and deleting projects,
as well as managing project-specific settings and workflow steps.

Overview

This module exports the projectController object, which provides methods for:

●​ Project CRUD operations

●​ Updating project settings (legacy CMS, affix, file format, destination stack)

●​ Handling confirmations for affix and file format

●​ Managing project workflow steps and migration execution

●​ Reverting projects and retrieving migrated stacks

Each controller method receives the Express Request and Response objects, delegates the
main logic to the projectService, and sends the appropriate HTTP response.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Exported Controller Methods

1. getAllProjects

Retrieves all projects.

●​ Calls projectService.getAllProjects(req) and responds with status 200 and
the list of projects.

2. getProject

Retrieves a single project based on the request.

●​ Calls projectService.getProject(req) and responds with status 200 and the
project data.

3. createProject

Creates a new project.

●​ Calls projectService.createProject(req) and responds with status 201 and
the created project.

4. updateProject

Updates an existing project.

●​ Calls projectService.updateProject(req) and responds with status 200 and
the updated project.

5. updateLegacyCMS

Updates the legacy CMS configuration for a project.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Calls projectService.updateLegacyCMS(req) and responds with the service's
status and data.

6. updateAffix

Updates the affix for a project.

●​ Calls projectService.updateAffix(req) and responds with the service's status
and data.

7. affixConfirmation

Handles affix confirmation for a project.

●​ Calls projectService.affixConfirmation(req) and responds with the
service's status and data.

8. updateFileFormat

Updates the file format for a project.

●​ Calls projectService.updateFileFormat(req) and responds with the service's
status and data.

9. fileformatConfirmation

Handles file format confirmation for a project.

●​ Calls projectService.fileformatConfirmation(req) and responds with the
service's status and data.

10. updateDestinationStack

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Updates the destination stack for a project.

●​ Calls projectService.updateDestinationStack(req) and responds with the
service's status and data.

11. updateCurrentStep

Updates the current step of a project workflow.

●​ Calls projectService.updateCurrentStep(req) and responds with status 200
and the updated project.

12. deleteProject

Deletes a project.

●​ Calls projectService.deleteProject(req) and responds with status 200 and
the deleted project data.

13. revertProject

Reverts a project to a previous state.

●​ Calls projectService.revertProject(req) and responds with the service's
status and data.

14. updateStackDetails

Updates stack details for a project.

●​ Calls projectService.updateStackDetails(req) and responds with the
service's status and data.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

15. updateMigrationExecution

Updates migration execution details for a project.

●​ Calls projectService.updateMigrationExecution(req) and responds with the
service's status and data.

16. getMigratedStacks

Retrieves stacks that have been migrated for a project.

●​ Calls projectService.getMigratedStacks(req) and responds with the
service's status and data.

Example Usage

Import and use the controller in your route definitions:

import { projectController } from './controllers/projects.controller';

router.get('/projects', projectController.getAllProjects);

router.get('/projects/:id', projectController.getProject);

router.post('/projects', projectController.createProject);

router.put('/projects/:id', projectController.updateProject);

router.put('/projects/:id/legacy-cms', projectController.updateLegacyCMS);

router.put('/projects/:id/affix', projectController.updateAffix);

router.post('/projects/:id/affix-confirmation',
projectController.affixConfirmation);

router.put('/projects/:id/file-format',
projectController.updateFileFormat);

router.post('/projects/:id/file-format-confirmation',
projectController.fileformatConfirmation);

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

router.put('/projects/:id/destination-stack',
projectController.updateDestinationStack);

router.put('/projects/:id/current-step',
projectController.updateCurrentStep);

router.delete('/projects/:id', projectController.deleteProject);

router.post('/projects/:id/revert', projectController.revertProject);

router.put('/projects/:id/stack-details',
projectController.updateStackDetails);

router.put('/projects/:id/migration-execution',
projectController.updateMigrationExecution);

router.get('/projects/:id/migrated-stacks',
roectController.getMigratedStacks);

src/controllers/user.controller.ts

The user.controller.ts file defines controller functions for handling user-related
operations. This controller acts as the interface between Express routes and the
userService, focusing on retrieving user profile information.

Overview

This module exports the userController object, which currently provides a single method:

●​ Retrieving the authenticated user's profile

The controller method receives the Express Request and Response objects, delegates the
main logic to the userService, and sends the appropriate HTTP response.

Exported Controller Methods

1. getUserProfile

Retrieves the profile information for the current user.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Parameters:

○​ req: Express Request object

○​ res: Express Response object

●​ Process:

○​ Calls userService.getUserProfile(req) to fetch the user's profile
data.

○​ Responds with the status and data provided by the service.

Example Usage

Import and use the controller in your route definitions:

import { userController } from './controllers/user.controller';

router.get('/user/profile', userController.getUserProfile);

Note :-

●​ The controller method is asynchronous and uses await to handle the service
response.

●​ The business logic is encapsulated in the
authService,migrationService,orgService,contentMapperService,proje
ctService,userService, keeping the controller focused on request/response
handling.

●​ HTTP status codes and response data are determined by the service layer, allowing
for flexible error handling and messaging.

src/middlewares/auth.middleware.ts

This middleware provides authentication for incoming HTTP requests by verifying a JWT
token. It ensures that only requests with a valid token can access protected routes. The
middleware checks for the presence of an app_token header, verifies the token using the
application's secret key, and attaches the decoded payload to the request object for
downstream use.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Exported Middleware

authenticateUser

Purpose:​

●​ Authenticates requests by validating the JWT token provided in the app_token
header.

●​ Parameters:

1.​ req: Express Request object

2.​ res: Express Response object

3.​ next: Express NextFunction callback

●​ Process:

1.​ Retrieves the token from the app_token header.

2.​ If the token is missing, responds with a 401 Unauthorized status and an
error message.

3.​ Verifies the token using the secret key from the configuration.

4.​ If verification fails, responds with a 401 Unauthorized status and an error
message.

5.​ If verification succeeds, attaches the decoded payload to
req.body.token_payload.

6.​ Calls next() to pass control to the next middleware or route handler.

Notes

●​ The middleware expects the JWT token to be provided in the app_token header.

●​ If the token is missing or invalid, the request is rejected with a 401 Unauthorized
response.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ The decoded token payload is attached to req.body.token_payload for use in
subsequent handlers.

●​ The secret key for token verification is sourced from the application configuration
(config.APP_TOKEN_KEY).

●​ This middleware should be applied to any route that requires authentication.

Best Practices

●​ Always use this middleware on routes that require user authentication.

●​ Never expose sensitive information from the token payload in responses.

●​ Ensure the secret key is securely managed and not hard-coded in the codebase.

This middleware helps enforce secure access control across your application's protected
endpoints.

src/middlewares/auth.uploadService.middleware.ts

Overview

This middleware secures routes intended for the upload service by validating a secret key
provided in the request headers. Only requests with the correct secret key, as configured in the
application settings, are allowed to proceed. This helps prevent unauthorized access to file
upload endpoints.

Exported Middleware

authenticateUploadService

Purpose:​

●​ Authenticates requests to upload service routes by checking the secret_key
header against the configured file upload key.

●​ Parameters:

1.​ req: Express Request object

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

2.​ res: Express Response object

3.​ next: Express NextFunction callback

●​ Process:

1.​ Retrieves the secret_key from the request headers.

2.​ Compares the provided key to the configured FILE_UPLOAD_KEY.

3.​ If the key is invalid or missing, responds with a 401 Unauthorized status
and an error message.

4.​ If the key is valid, calls next() to pass control to the next middleware or
route handler.

Example Usage

import { authenticateUploadService } from
'./middlewares/auth.uploadService.middleware';

router.post('/upload', authenticateUploadService, (req, res) => {

 // Handle file upload logic here

 res.json({ message: 'Upload authorized and successful!' });

});

Notes

●​ The middleware expects the secret key to be provided in the secret_key header.

●​ If the key does not match the configured value (config.FILE_UPLOAD_KEY), the
request is rejected with a 401 Unauthorized response.

●​ Use this middleware on any route that should be restricted to trusted upload
services or clients.

●​ The file upload key should be securely managed and never exposed in client-side
code.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Best Practices

●​ Always protect sensitive upload endpoints with this middleware.

●​ Rotate the file upload key periodically and update the configuration accordingly.

●​ Never log or expose the secret key in responses or logs.

This middleware ensures that only authorized services or clients can access your application's
file upload functionality.

src/models/Authentication.ts

This module provides a database interface for managing authentication data, specifically user
records, using a JSON file as persistent storage. It leverages the lowdb library with Lodash
utilities for convenient data manipulation.

Overview

●​ Purpose:​
To define the structure and provide access to the authentication data store, which
contains user authentication details.

●​ Storage:​
Data is persisted in a JSON file located at database/authentication.json in the
project root.

●​ Tech Stack:

○​ lowdb for lightweight JSON database operations.

○​ Lodash utilities for enhanced querying and data manipulation.

○​ TypeScript for type safety.

Interface: AuthenticationDocument

Defines the structure of the authentication data stored in the database.

If you have any questions, please reach out to tso-migration@contentstack.com

https://github.com/typicode/lowdb
https://github.com/typicode/lowdb
mailto:tso-migration@contentstack.com

interface AuthenticationDocument {

 users: {

 user_id: string;

 email: string;

 region: string;

 authtoken: string;

 created_at: string;

 updated_at: string;

 }[];

}

●​ users:​
An array of user objects, each containing:

○​ user_id: Unique identifier for the user.

○​ email: User's email address.

○​ region: User's region or location.

○​ authtoken: Authentication token for the user.

○​ created_at: Timestamp of when the user was created.

○​ updated_at: Timestamp of the last update to the user record.

Default Data

Defines the initial structure of the database if the JSON file does not exist or is empty.

const defaultData: AuthenticationDocument = { users: [] };

Database Instance

Creates and exports a singleton database instance for authentication data.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

const db = new LowWithLodash(

 new JSONFile<AuthenticationDocument>(path.join(process.cwd(),
"database", "authentication.json")),

 defaultData

);

export default db;

●​ File Path:​
The database file is located at
<project_root>/database/authentication.json.

●​ LowWithLodash:​
A utility wrapper (imported from ../utils/lowdb-lodash.utils.js) that
combines lowdb with Lodash methods for easier data manipulation.

●​ Default Data:​
If the file does not exist, it is initialized with an empty users array.

Notes

●​ Persistence:​
All changes to the database must be followed by a call to db.write() to persist
changes to disk.

●​ Type Safety:​
The use of TypeScript interfaces ensures that only valid user objects are stored.

●​ Extensibility:​
Additional fields or methods can be added to the AuthenticationDocument or the
database instance as needed.

This module defines the data model and database instance for managing content type
mappings between Contentstack and another CMS. It uses lowdb with a custom Lodash
wrapper for convenient data access and manipulation. The data is persisted in a JSON file.

Imports

If you have any questions, please reach out to tso-migration@contentstack.com

https://github.com/typicode/lowdb
mailto:tso-migration@contentstack.com

import { JSONFile } from "lowdb/node";

import path from 'path';

import LowWithLodash from "../utils/lowdb-lodash.utils.js";

●​ JSONFile: Adapter for lowdb to read/write JSON files.

●​ path: Node.js module for handling file paths.

●​ LowWithLodash: Custom utility that wraps lowdb with Lodash for enhanced
querying.

Interfaces
ContentTypesMapper

Represents a mapping between a Contentstack content type and a content type in another
CMS.

export interface ContentTypesMapper {

 id: string; // Unique identifier for the mapper entry

 projectId: string; // Associated project ID

 otherCmsTitle: string; // Title of the content type in the other
CMS

 otherCmsUid: string; // Unique identifier in the other CMS

 isUpdated: boolean; // Whether the mapping has been updated

 updateAt: Date; // Last update timestamp

 contentstackTitle: string; // Title in Contentstack

 contentstackUid: string; // UID in Contentstack

 status: number; // Status code (e.g., active, inactive)

 fieldMapping: []; // Field mapping between the two content
types

 type: string; // Type/category of the content type

}

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

ContentTypeMapperDocument

Represents the structure of the JSON document stored in the database.

interface ContentTypeMapperDocument {

 ContentTypesMappers: ContentTypesMapper[];

}

Default Data

Defines the default structure for the database file if it does not exist.

const defaultData: ContentTypeMapperDocument = { ContentTypesMappers: []
};

Database Instance

Initializes a lowdb instance with Lodash utilities, using a JSON file for persistence.

const db = new LowWithLodash(

 new JSONFile<ContentTypeMapperDocument>(path.join(process.cwd(),
"database", 'contentTypesMapper.json')),

 defaultData

);

●​ db: The main database instance for reading and writing content type mappings.

Exports
export default db;

●​ Exports the database instance for use in other modules.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Notes

●​ The fieldMapping property is typed as an empty array ([]). For better type safety,
consider defining a specific type for field mappings.

●​ The updateAt property is a Date object. When persisting to JSON, ensure proper
serialization/deserialization.

src/models/FieldMapper.ts

This module defines the data model and database instance for managing field mapping
configurations between Contentstack and other CMS platforms. It leverages lowdb for
lightweight JSON-based storage, with Lodash utilities for enhanced querying.

Imports

import { JSONFile } from "lowdb/node";

import LowWithLodash from "../utils/lowdb-lodash.utils.js";

import path from "path";

●​ JSONFile: Adapter for lowdb to read/write JSON files.

●​ LowWithLodash: Custom utility extending lowdb with Lodash methods.

●​ path: Node.js module for handling file paths.

Advanced Interface

export interface Advanced {

 validationRegex: string;

 mandatory: boolean;

 multiple: boolean;

 unique: boolean;

 nonLocalizable: boolean;

 embedObject: boolean;

If you have any questions, please reach out to tso-migration@contentstack.com

https://github.com/typicode/lowdb
mailto:tso-migration@contentstack.com

 embedObjects: any;

 minChars: string;

 maxChars: number;

 default_value: string;

 description: string;

 validationErrorMessage: string;

 options: any[];

}

Description:

Defines advanced configuration options for a field mapping, such as validation rules,
localization, embedding, and UI options.

●​ validationRegex: Regular expression for validating field values.

●​ mandatory: Whether the field is required.

●​ multiple: Whether the field accepts multiple values.

●​ unique: Whether the field value must be unique.

●​ nonLocalizable: If true, the field is not localizable.

●​ embedObject: If true, the field embeds an object.

●​ embedObjects: Additional embedded object configuration.

●​ minChars: Minimum character length for the field value.

●​ maxChars: Maximum character length for the field value.

●​ default_value: Default value for the field.

●​ description: Description of the field.

●​ validationErrorMessage: Custom error message for validation failures.

●​ options: List of selectable options (for dropdowns, etc.).

FieldMapper Interface

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

interface FieldMapper {

 field_mapper: {

 id: string;

 projectId: string;

 contentTypeId: string;

 uid: string;

 otherCmsField: string;

 otherCmsType: string;

 contentstackField: string;

 contentstackFieldUid: string;

 contentstackFieldType: string;

 isDeleted: boolean;

 backupFieldType: string;

 backupFieldUid: string;

 refrenceTo: { uid: string; title: string };

 advanced: Advanced;

 }[];

}

Description:

Represents the structure of the field mapping data stored in the database.

●​ id: Unique identifier for the field mapping.

●​ projectId: Associated project ID.

●​ contentTypeId: Content type ID in Contentstack.

●​ uid: Unique identifier for the mapping.

●​ otherCmsField: Field name in the other CMS.

●​ otherCmsType: Field type in the other CMS.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ contentstackField: Field name in Contentstack.

●​ contentstackFieldUid: Field UID in Contentstack.

●​ contentstackFieldType: Field type in Contentstack.

●​ isDeleted: Soft delete flag.

●​ backupFieldType: Backup field type.

●​ backupFieldUid: Backup field UID.

●​ refrenceTo: Reference to another field (with uid and title).

●​ advanced: Advanced configuration options (see above).

Default Data

const defaultData: FieldMapper = { field_mapper: [] };

Description:

Initializes the database with an empty array of field mappings if the JSON file does not exist.

Database Instance

const db = new LowWithLodash(

 new JSONFile<FieldMapper>(path.join(process.cwd(), "database",
"field-mapper.json")),

 defaultData

);

Description:​

Creates a lowdb database instance for field mappings, stored at
database/field-mapper.json in the project root.

●​ Uses the LowWithLodash utility for Lodash-powered queries.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Initializes with defaultData if the file is missing.

Export

export default db;

Description:

Exports the database instance for use in other modules.

/src/models/project-lowdb.ts

This module defines the data model and database instance for managing project-related data
using lowdb with Lodash utilities. It provides TypeScript interfaces for the project structure
and initializes a persistent JSON-based database for storing project information.

Imports

●​ path: Node.js module for handling file and directory paths.

●​ JSONFile: Adapter from lowdb/node for reading and writing JSON files.

●​ LowWithLodash: Custom utility that extends lowdb with Lodash methods for easier
data manipulation.

Interfaces

LegacyCMS

Represents metadata and configuration for a legacy CMS file and its storage details.

interface LegacyCMS {

 cms: string;

 affix: string;

 affix_confirmation: boolean;

 file_format: string;

If you have any questions, please reach out to tso-migration@contentstack.com

https://github.com/typicode/lowdb
mailto:tso-migration@contentstack.com

 file_format_confirmation: boolean;

 file: {

 id: string;

 name: string;

 size: number;

 type: string;

 path: string;

 };

 awsDetails: {

 awsRegion: string;

 bucketName: string;

 buketKey: string;

 };

 file_path: string;

 is_fileValid: boolean;

 is_localPath: boolean;

}

StackDetails

Describes a stack's metadata, such as its unique identifier, label, and creation details.

interface StackDetails {

 uid: string;

 label: string;

 master_locale: string;

 created_at: string;

 isNewStack: boolean;

}

ExecutionLog

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Represents a log entry for a project execution, including a URL and timestamp.

interface ExecutionLog {

 log_url: string;

 date: Date;

}

Project

Defines the structure of a project, including metadata, status, related stacks, migration state,
and logs.

interface Project {

 id: string;

 region: string;

 org_id: string;

 owner: string;

 created_by: string;

 updated_by: string;

 former_owner_ids: [];

 name: string;

 description: string;

 status: number;

 current_step: number;

 destination_stack_id: string;

 test_stacks: [];

 current_test_stack_id: string;

 legacy_cms: LegacyCMS;

 content_mapper: any[];

 execution_log: [ExecutionLog];

 created_at: string;

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 updated_at: string;

 isDeleted: boolean;

 isNewStack: boolean;

 newStackId: string;

 stackDetails: [];

 mapperKeys: {};

 extract_path: string;

 isMigrationStarted: boolean;

 isMigrationCompleted: boolean;

 migration_execution: boolean;

}

ProjectDocument

The root object for the database, containing an array of projects.

interface ProjectDocument {

 projects: Project[];

}

Default Data

Defines the initial structure for the database if the file does not exist.

const defaultData: ProjectDocument = { projects: [] };

Database Instance

Initializes a lowdb instance with Lodash utilities, using a JSON file at
database/project.json in the project root.

const db = new LowWithLodash(

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 new JSONFile<ProjectDocument>(path.join(process.cwd(), "database",
"project.json")),

 defaultData

);

●​ db: The exported database instance. Use this to read, write, and manipulate project
data.

src/models/types.ts

These interfaces are used throughout the application to ensure type safety and consistency
when handling user data, authentication payloads, service responses, migration queries, and
locale information.

Interfaces

1. User

Represents a user in the system.

Property Type Description

email string The email address of the user.

password string The password of the user.

export interface User {

 email: string;

 password: string;

}

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

2. AppTokenPayload

Represents the payload contained within an application token, typically used for authentication
and authorization.

Property Type Description

region string The region associated with the user or token.

user_id string The unique identifier of the user.

export interface AppTokenPayload {

 region: string;

 user_id: string;

3. LoginServiceType

Represents the structure of a response from a login service.

Property Type Description

data any The data returned by the login service.

status number The HTTP status code of the response.

export interface LoginServiceType {

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 data: any;

 status: number;

}

4. MigrationQueryType

Represents the structure of a migration query, typically used for database or organizational
migrations.

Property Type Description

id string The unique identifier for the migration query.

org_id string The organization ID associated with the migration.

region string The region where the migration is taking place.

owner string The owner of the migration query.

export interface MigrationQueryType {

 id: string;

 org_id: string;

 region: string;

 owner: string;

}

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

5. Locale

Represents locale information for internationalization and localization purposes.

Property Type Description

code string The locale code (e.g., 'en-US').

name string The display name of the locale.

fallback_locale string The fallback locale code.

uid string The unique identifier for the locale.

export interface Locale {

 code: string;

 name: string;

 fallback_locale: string;

 uid: string;

}

src/routes/auth.routes.ts​
​

Authentication Routes (auth.routes.ts)

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

This module defines the Express router for handling authentication-related endpoints in the
application. It provides routes for user login and requesting an SMS token, with request
validation and asynchronous error handling.

Overview

●​ File: src/routes/auth.routes.ts

●​ Purpose: Exposes authentication endpoints for user login and SMS token requests.

●​ Dependencies:

○​ express: For routing.

○​ authController: Contains authentication logic.

○​ asyncRouter: Utility for async error handling.

○​ validator: Middleware for request validation.

Endpoints

1. User Login

●​ Route: POST /user-session

●​ Description: Authenticates a user and creates a session.

●​ Request Body:

○​ Expects user credentials (e.g., username/email and password).

●​ Middleware:

○​ validator("auth"): Validates the request body for required fields and
format.

○​ asyncRouter(authController.login): Handles the login logic
asynchronously.

●​ Responses:

○​ 200 OK: Returns user session information (e.g., tokens, user details).

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

○​ 400 Bad Request: If validation fails.

○​ 500 Internal Server Error: If an unexpected error occurs.

Example Request

POST /user-session

{

 "email": "user@example.com",

 "password": "yourPassword"

}

Example Response

{

 "token": "jwt-token-string",

 "user": {

 "id": "123",

 "email": "user@example.com"

 }

}

2. Request SMS Token

●​ Route: POST /request-token-sms

●​ Description: Requests an SMS token for user authentication (e.g., for 2FA or
passwordless login).

●​ Request Body:

○​ Expects user information (e.g., phone number).

●​ Middleware:

○​ validator("auth"): Validates the request body for required fields and
format.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

○​ asyncRouter(authController.RequestSms): Handles the SMS token
request logic asynchronously.

●​ Responses:

○​ 200 OK: Returns the SMS token or confirmation of SMS sent.

○​ 400 Bad Request: If validation fails.

○​ 500 Internal Server Error: If an unexpected error occurs.

Example Request

POST /request-token-sms

{

 "phone": "+1234567890"

}

Example Response

{

 "message": "SMS token sent successfully"

}

Error Handling

●​ ValidationError: Returned if the request body does not meet the required schema.

●​ InternalServerError: Returned if an error occurs during processing.

contentMapper.routes.ts

This file defines the Express routes for the Content Mapper API. These endpoints allow for
managing content types, field mappings, and global fields within a project. The routes are
handled by the contentMapperController and use the asyncRouter utility for error
handling.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

The Content Mapper API provides endpoints for:

●​ Creating dummy data for development/testing

●​ Listing and managing content types and field mappings

●​ Retrieving and updating global fields

●​ Resetting or updating content type mappings

All endpoints are prefixed by the router mount path (e.g., /api/content-mapper).

Routes

POST /createDummyData/:projectId

Description:​

Developer endpoint to create dummy data for a given project.

Parameters:

●​ projectId (string, path): The ID of the project.

Response:​

Creates and returns dummy data for the specified project.

GET /contentTypes/:projectId/:skip/:limit/:searchText?

Description:​

Get a paginated list of content types for a project, optionally filtered by search text.

Parameters:

●​ projectId (string, path): The ID of the project.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ skip (number, path): Number of items to skip (for pagination).

●​ limit (number, path): Maximum number of items to return.

●​ searchText (string, path, optional): Text to filter content types.

Response:​

Returns a list of content types.

GET /fieldMapping/:projectId/:contentTypeId/:skip/:limit/:searchText?

Description:​

Get a paginated list of field mappings for a specific content type in a project.

Parameters:

●​ projectId (string, path): The ID of the project.

●​ contentTypeId (string, path): The ID of the content type.

●​ skip (number, path): Number of items to skip.

●​ limit (number, path): Maximum number of items to return.

●​ searchText (string, path, optional): Text to filter field mappings.

Response:​

Returns a list of field mappings.

GET /:projectId/contentTypes/:contentTypeUid?

Description:​

Get a list of existing content types for a project, or a specific content type if contentTypeUid
is provided.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Parameters:

●​ projectId (string, path): The ID of the project.

●​ contentTypeUid (string, path, optional): The UID of the content type.

Response:​

Returns content type(s) information.

GET /:projectId/globalFields/:globalFieldUid?

Description:​

Get a list of existing global fields for a project, or a specific global field if globalFieldUid is
provided.

Parameters:

●​ projectId (string, path): The ID of the project.

●​ globalFieldUid (string, path, optional): The UID of the global field.

Response:​

Returns global field(s) information.

PUT /contentTypes/:orgId/:projectId/:contentTypeId

Description:​

Update field mapping or content type for a given organization, project, and content type.

Parameters:

●​ orgId (string, path): The ID of the organization.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ projectId (string, path): The ID of the project.

●​ contentTypeId (string, path): The ID of the content type.

Request Body:​

Field mapping or content type data to update.

Response:​

Returns the updated content type or field mapping.

PUT /resetFields/:orgId/:projectId/:contentTypeId

Description:​

Reset field mapping or content type for a given organization, project, and content type.

Parameters:

●​ orgId (string, path): The ID of the organization.

●​ projectId (string, path): The ID of the project.

●​ contentTypeId (string, path): The ID of the content type.

Response:​

Resets and returns the content type or field mapping.

GET /:orgId/:projectId/content-mapper

Description:​

Remove the content mapper for a given organization and project.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Parameters:

●​ orgId (string, path): The ID of the organization.

●​ projectId (string, path): The ID of the project.

Response:​

Removes and returns the status of the content mapper.

PATCH /:orgId/:projectId/mapper_keys

Description:​

Update the content mapper keys for a given organization and project.

Parameters:

●​ orgId (string, path): The ID of the organization.

●​ projectId (string, path): The ID of the project.

Request Body:​

Mapper keys data to update.

Response:​

Returns the updated mapper keys.

/src/routes/migration.routes.ts​
​

migration.routes.ts

This file defines the Express router for handling migration-related API endpoints. It provides
routes for starting and deleting test stacks, creating test stacks, starting migrations, fetching

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

migration logs, and updating locale mappings. All routes are grouped under the "Migration"
category.

Imports

●​ express: Web framework for Node.js.

●​ asyncRouter: Utility to wrap route handlers for async error handling.

●​ migrationController: Controller containing migration logic.

Router Initialization

const router = express.Router({ mergeParams: true });

Initializes an Express router with merged parameters from parent routers.

Route Definitions

1. Start Test Migration

router.post(

 "/test-stack/:orgId/:projectId",

 asyncRouter(migrationController.startTestMigration)

);

●​ Method: POST

●​ Path: /test-stack/:orgId/:projectId

●​ Description: Initiates a test migration for a given organization and project.

●​ Parameters:

○​ orgId (string): Organization ID (URL param)

○​ projectId (string): Project ID (URL param)

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Returns: Promise resolving when the test migration is started.

2. Delete Test Stack

router.post(

 "/test-stack/:projectId",

 asyncRouter(migrationController.deleteTestStack)

);

●​ Method: POST

●​ Path: /test-stack/:projectId

●​ Description: Deletes a test stack for the specified project.

●​ Parameters:

○​ projectId (string): Project ID (URL param)

●​ Returns: Promise resolving when the test stack is deleted.

3. Create Test Stack

router.post(

 "/create-test-stack/:orgId/:projectId",

 asyncRouter(migrationController.createTestStack)

);

●​ Method: POST

●​ Path: /create-test-stack/:orgId/:projectId

●​ Description: Creates a new test stack for the specified organization and project.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Parameters:

○​ orgId (string): Organization ID (URL param)

○​ projectId (string): Project ID (URL param)

●​ Returns: Promise resolving when the test stack is created.

4. Start Final Migration

router.post(

 "/start/:orgId/:projectId",

 asyncRouter(migrationController.startMigration)

);

●​ Method: POST

●​ Path: /start/:orgId/:projectId

●​ Description: Starts the final migration for the specified organization and project.

●​ Parameters:

○​ orgId (string): Organization ID (URL param)

○​ projectId (string): Project ID (URL param)

●​ Returns: Promise resolving when the migration is started.

5. Get Migration Logs

router.get(

 "/get_migration_logs/:orgId/:projectId/:stackId",

 asyncRouter(migrationController.getLogs)

);

●​ Method: GET

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Path: /get_migration_logs/:orgId/:projectId/:stackId

●​ Description: Retrieves migration logs for a specific stack within a project and
organization.

●​ Parameters:

○​ orgId (string): Organization ID (URL param)

○​ projectId (string): Project ID (URL param)

○​ stackId (string): Stack ID (URL param)

●​ Returns: Promise resolving with the migration logs.

6. Save Source Locales

router.post(

 "/localeMapper/:projectId",

 asyncRouter(migrationController.saveLocales)

);

●​ Method: POST

●​ Path: /localeMapper/:projectId

●​ Description: Updates the source locales fetched from the legacy CMS for the
specified project.

●​ Parameters:

○​ projectId (string): Project ID (URL param)

○​ Body: { locales: Object } - Locales to be saved

●​ Returns: Promise resolving when locales are updated in the database.

7. Save Mapped Locales

router.post(

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 "/updateLocales/:projectId",

 asyncRouter(migrationController.saveMappedLocales)

);

●​ Method: POST

●​ Path: /updateLocales/:projectId

●​ Description: Updates the mapped locales as provided by the user for the specified
project.

●​ Parameters:

○​ projectId (string): Project ID (URL param)

○​ Body: { locales: Object } - Mapped locales to be saved

●​ Returns: Promise resolving when mapped locales are updated in the database.

Export
export default router;

Exports the configured router for use in the main application.

src/routes/org.routes.ts

org.routes.ts Documentation
This file defines the Express router for handling organization-related routes in the application.
It connects HTTP endpoints to controller logic, applies validation, and ensures asynchronous
error handling.

Overview

●​ File: src/routes/org.routes.ts

●​ Purpose: To define and export routes related to organization stacks, locales, and
details.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Dependencies:

○​ express: For routing.

○​ orgController: Contains the business logic for each route.

○​ asyncRouter: Utility to handle async errors in route handlers.

○​ validator: Middleware for validating request bodies.

Route Definitions

1. Get All Stacks

●​ Endpoint: GET /stacks/:searchText?

●​ Description: Retrieves all stacks for the organization. Optionally filters stacks by
searchText.

●​ Parameters:

○​ searchText (optional): String to filter stacks.

●​ Controller: orgController.getAllStacks

●​ Example:​
GET /stacks​
GET /stacks/marketing

2. Create a New Stack

●​ Endpoint: POST /stacks

●​ Description: Creates a new stack in the organization.

●​ Validation: Uses validator("stack") to validate the request body.

●​ Controller: orgController.createStack

●​ Request Body:​
Must conform to the "stack" schema defined in the validator.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

3. Get All Locales

●​ Endpoint: GET /locales

●​ Description: Retrieves all locales available in Contentstack for the organization.

●​ Controller: orgController.getLocales

4. Get Stack Status

●​ Endpoint: POST /stack_status

●​ Description: Retrieves the status of a destination stack, including content type
counts.

●​ Validation: Uses validator("destination_stack") to validate the request body.

●​ Controller: orgController.getStackStatus

●​ Request Body:​
Must conform to the "destination_stack" schema defined in the validator.

5. Get Stack Locales

●​ Endpoint: GET /get_stack_locales

●​ Description: Retrieves all locales for a specific stack.

●​ Controller: orgController.getStackLocale

6. Get Organization Details

●​ Endpoint: GET /get_org_details

●​ Description: Retrieves details about the organization.

●​ Controller: orgController.getOrgDetails

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Middleware

●​ asyncRouter: Wraps each controller to handle errors in async functions and pass
them to Express error handlers.

●​ validator: Validates request bodies for specific routes to ensure data integrity.

Projects Routes (src/routes/projects.routes.ts)

This module defines the Express router for handling all project-related API endpoints. It
connects HTTP routes to controller methods, applies validation where necessary, and ensures
asynchronous error handling.

Imports

●​ express: Web framework for Node.js.

●​ projectController: Contains all controller methods for project operations.

●​ asyncRouter: Utility to wrap async route handlers for error handling.

●​ validator: Middleware for validating request bodies and parameters.

Route Definitions

GET /

●​ Description: Retrieve all projects.

●​ Controller: projectController.getAllProjects

●​ Validation: None

GET /:projectId

●​ Description: Retrieve a single project by its ID.

●​ Controller: projectController.getProject

●​ Validation: None

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

POST /

●​ Description: Create a new project.

●​ Controller: projectController.createProject

●​ Validation: None

PUT /:projectId

●​ Description: Update an existing project by its ID.

●​ Controller: projectController.updateProject

●​ Validation: None

PUT /:projectId/legacy-cms

●​ Description: Update the legacy CMS details for a project.

●​ Controller: projectController.updateLegacyCMS

●​ Validation: validator("cms")

PUT /:projectId/affix

●​ Description: Update the Affix details for a project.

●​ Controller: projectController.updateAffix

●​ Validation: validator("affix")

PUT /:projectId/affix_confirmation

●​ Description: Confirm the Affix update for a project.

●​ Controller: projectController.affixConfirmation

●​ Validation: validator("affix_confirmation_validator")

PUT /:projectId/file-format

●​ Description: Update the file format for a project.

●​ Controller: projectController.updateFileFormat

●​ Validation: validator("file_format")

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

PUT /:projectId/fileformat_confirmation

●​ Description: Confirm the file format update for a project.

●​ Controller: projectController.fileformatConfirmation

●​ Validation: validator("fileformat_confirmation_validator")

PUT /:projectId/destination-stack

●​ Description: Update the destination CMS/stack for a project.

●​ Controller: projectController.updateDestinationStack

●​ Validation: validator("destination_stack")

PUT /:projectId/current-step

●​ Description: Update the current step of a project.

●​ Controller: projectController.updateCurrentStep

●​ Validation: None

DELETE /:projectId

●​ Description: Delete a project by its ID.

●​ Controller: projectController.deleteProject

●​ Validation: None

PATCH /:projectId

●​ Description: Revert a project to a previous state.

●​ Controller: projectController.revertProject

●​ Validation: None

PATCH /:projectId/stack-details

●​ Description: Update stack details for a project.

●​ Controller: projectController.updateStackDetails

●​ Validation: None

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

PUT /:projectId/migration-excution

●​ Description: Update the migration execution key for a project.

●​ Controller: projectController.updateMigrationExecution

●​ Validation: None

GET /:projectId/get-migrated-stacks

●​ Description: Retrieve migrated stacks for a project.

●​ Controller: projectController.getMigratedStacks

●​ Validation: None

Middleware

●​ asyncRouter: Wraps each controller to handle errors in async functions.

●​ validator: Applies request validation for specific routes.

User Routes (src/routes/user.routes.ts)

This file defines the Express routes related to user operations, specifically the user profile
endpoint. It imports the necessary controller and utility for handling asynchronous route logic.

Imports

●​ express: The Express framework for building web applications.

●​ userController: Contains the business logic for user-related operations.

●​ asyncRouter: Utility to wrap route handlers for proper async error handling.

Route Definitions

GET /profile

Description:​

●​ Retrieves the profile information of the currently authenticated user.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Handler:​

●​ userController.getUserProfile (wrapped with asyncRouter for async error
handling)

●​ Request:

○​ Method: GET

○​ Endpoint: /profile

○​ Authentication: Typically, this route should be protected and require user
authentication (not shown in this snippet).

●​ Response:

○​ 200 OK: Returns the user's profile data in JSON format.

○​ 4xx/5xx: Returns an error object if the request fails or the user is not
authenticated.

src/services/contentful/jsonRTE.ts​
​
jsonRTE.ts

This module provides utilities to parse Contentful Rich Text Editor (RTE) JSON structures into
a custom intermediate format suitable for further processing or migration. It supports a wide
range of node types, including text, headings, lists, tables, references, and assets, and is
designed to be extensible and locale-aware.

Overview

The module is designed to convert Contentful RTE JSON nodes into a custom format, handling
nested structures, locale-specific references, and asset lookups. It is used in migration and
transformation pipelines where Contentful content needs to be adapted to another system or
schema.

Configuration and Imports

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

import path from 'path';

import fs from 'fs';

import { MIGRATION_DATA_CONFIG } from '../../constants/index.js';

●​ MIGRATION_DATA_CONFIG: Contains directory and file names for data, locales,
references, and assets used during migration.

Types

type NodeType = string;

type LangType = string;

type StackId = string;

●​ NodeType: The type of node in the Contentful RTE JSON (e.g., 'paragraph',
'heading-1').

●​ LangType: The locale/language code (e.g., 'en-us').

●​ StackId: The identifier for the destination stack/environment.

File Reading Utility

function readFile(filePath: string) {

 if (fs.existsSync(filePath)) {

 return JSON.parse(fs.readFileSync(filePath, 'utf-8'));

 }

 return undefined;

}

●​ Reads and parses a JSON file if it exists, otherwise returns undefined.

●​ Used for loading reference and asset mappings.

Parser Map

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

const parsers: Map<NodeType, (obj: any, lang?: LangType,
destination_stack_id?: StackId) => any> = new Map([

 // ...nodeType to parser function mappings...

]);​

●​ Maps each supported Contentful node type to its corresponding parser function.

●​ Enables dynamic dispatch based on node type.

Main Entry Point

export default function jsonParse(obj: { nodeType: NodeType }, lang?:
LangType, destination_stack_id?: StackId) {

 const parser = parsers.get(obj.nodeType);

 if (parser) {

 return parser(obj, lang, destination_stack_id);

 }

 return null;

}​

●​ jsonParse: The main function to parse a Contentful RTE node.

○​ obj: The node object (must have a nodeType property).

○​ lang: Optional locale code.

○​ destination_stack_id: Optional stack/environment ID.

●​ Returns the parsed node in the custom format, or null if the node type is
unsupported.

UID Generation

function generateUID(prefix: string): string {

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 return `${prefix}${Math.floor(Math.random() * 100000000000000)}`;

}

●​ Generates a pseudo-unique identifier for each node, prefixed by the node type.

Node Parsers

Document and Paragraphs

●​ parseDocument: Parses the root document node, recursively parsing its children.

●​ parseParagraph: Parses a paragraph node and its children.

Text and Marks

●​ parseText: Parses a text node, applying any marks (e.g., bold, italic, code).

Lists and List Items

●​ parseUL: Parses an unordered list.

●​ parseOL: Parses an ordered list.

●​ parseLI: Parses a list item.

Headings

●​ parseHeading1 to parseHeading6: Parse heading nodes of levels 1 to 6.

Blockquote and Horizontal Rule

●​ parseBlockquote: Parses a blockquote node.

●​ parseHR: Parses a horizontal rule node.

Tables

●​ parseTable: Parses a table node, including rows and cells.

●​ parseTableRow, parseHeadTR, parseTableHead, parseTBody, parseBodyTR,
parseTableBody: Handle various table substructures.

References and Assets

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ parseBlockReference: Parses a block reference to another entry, using locale and
stack mappings.

●​ parseInlineReference: Parses an inline reference to another entry.

●​ parseBlockAsset: Parses a block asset reference, resolving asset details from the
stack.

Hyperlinks

●​ parseEntryHyperlink: Parses a hyperlink to another entry.

●​ parseAssetHyperlink: Parses a hyperlink to an asset.

●​ parseHyperlink: Parses a generic hyperlink.

Extending the Parser

To add support for a new node type:

1.​ Implement a new parser function with the signature (obj, lang?,
destination_stack_id?) => any.

2.​ Add the function to the parsers map with the appropriate node type key.

Example Usage

import jsonParse from './jsonRTE';

const contentfulNode = { nodeType: 'paragraph', content: [/* ... */] };

const parsed = jsonParse(contentfulNode, 'en-us', 'my-stack-id');

console.log(parsed);

Notes

●​ The module expects certain directory and file structures for references and assets,
as defined in MIGRATION_DATA_CONFIG.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Locale and stack awareness is built into reference and asset resolution.

●​ The output format is designed for compatibility with downstream systems that
require a normalized, UID-based node structure.

Auth Service

This module provides authentication-related services, including user login and requesting an
SMS login token. It interacts with external APIs, manages authentication data, and handles
error logging and reporting.

Dependencies

●​ express.Request: For handling HTTP request data.

●​ config: Application configuration, including API endpoints.

●​ safePromise, getLogMessage: Utility functions for error handling and logging.

●​ https: Utility for making HTTP requests.

●​ LoginServiceType, AppTokenPayload: Type definitions for service responses and
JWT payloads.

●​ HTTP_CODES, HTTP_TEXTS: Constants for HTTP status codes and messages.

●​ generateToken: Utility for generating JWT tokens.

●​ BadRequestError, InternalServerError, ExceptionFunction: Custom error classes.

●​ AuthenticationModel: Model for storing authentication data.

●​ logger: Logging utility.

Functions
login(req: Request): Promise<LoginServiceType>

Logs in a user using the provided credentials and region. Handles authentication with the
external API, validates user roles, updates the authentication model, and generates a JWT
token.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Parameters

●​ req (Request): The Express request object containing user credentials (email,
password, optional tfa_token, and region).

Returns

●​ Promise: Resolves with an object containing either the login result or error details.

Throws

●​ ExceptionFunction: If an error occurs during the login process, such as missing
admin roles or user data.

Process

1.​ Extracts user data from the request body.

2.​ Sends a POST request to the external API for user authentication.

3.​ Handles API errors and logs them.

4.​ Checks if the user has admin roles in any organization; throws an error if not.

5.​ Updates or inserts the user's authentication data in the local model.

6.​ Generates a JWT token for the authenticated user.

7.​ Returns a success response with the token, or an error response if applicable.

Example

const response = await authService.login(req);

if (response.status === 200) {

 // Successful login

} else {

 // Handle error

}

requestSms(req: Request): Promise<LoginServiceType>

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Requests an SMS login token for the user by sending their credentials to the external API.

Parameters

●​ req (Request): The Express request object containing user credentials (email,
password, and region).

Returns

●​ Promise: Resolves with the API response or error details.

Throws

●​ InternalServerError: If an error occurs while sending the request.

Process

1.​ Extracts user data from the request body.

2.​ Sends a POST request to the external API endpoint for requesting an SMS token.

3.​ Handles API errors and logs them.

4.​ Returns the API response or error details.

Example

const response = await authService.requestSms(req);

if (response.status === 200) {

 // SMS token sent

} else {

 // Handle error

}

Exported Object
export const authService = {

 login,

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 requestSms,

};

●​ login: Function to authenticate a user and generate a JWT token.

●​ requestSms: Function to request an SMS login token.

Error Handling

●​ All errors are logged using the logger utility.

●​ Custom error classes (BadRequestError, InternalServerError,
ExceptionFunction) are used to provide meaningful error messages and status
codes.

src/services/contentful.service.ts​

​
Contentful Service
This module provides services for interacting with the Contentful CMS API. It includes
functions for fetching, creating, updating, and deleting content entries, as well as handling API
authentication and error management. The service abstracts the details of Contentful API
requests, manages configuration, and ensures consistent error handling and logging.

Dependencies

●​ express.Request: For handling HTTP request data.

●​ config: Application configuration, including Contentful API endpoints and
credentials.

●​ safePromise, getLogMessage: Utility functions for error handling and logging.

●​ https: Utility for making HTTP requests.

●​ ContentfulServiceType, ContentfulEntryPayload: Type definitions for service
responses and Contentful entry payloads.

●​ HTTP_CODES, HTTP_TEXTS: Constants for HTTP status codes and messages.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ BadRequestError, InternalServerError, ExceptionFunction: Custom error classes.

●​ logger: Logging utility.

Functions

getEntries(req: Request): Promise

Fetches a list of entries from Contentful based on the provided query parameters.

Parameters

●​ req (Request): The Express request object containing query parameters (e.g.,
content type, filters).

Returns

●​ Promise<ContentfulServiceType>: Resolves with an object containing the list of
entries or error details.

Throws

●​ ExceptionFunction: If an error occurs during the fetch process.

Process

●​ Extracts query parameters from the request.

●​ Sends a GET request to the Contentful API to fetch entries.

●​ Handles API errors and logs them.

●​ Returns the list of entries or error details.

Example

const response = await contentfulService.getEntries(req);

if (response.status === 200) {

 // Entries fetched successfully

} else {

 // Handle error

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

}

createEntry(req: Request): Promise

Creates a new entry in Contentful using the provided data.

Parameters

●​ req (Request): The Express request object containing entry data in the body.

Returns

●​ Promise<ContentfulServiceType>: Resolves with the created entry or error
details.

Throws

●​ BadRequestError: If required data is missing or invalid.

●​ InternalServerError: If an error occurs during the creation process.

Process

●​ Extracts entry data from the request body.

●​ Sends a POST request to the Contentful API to create the entry.

●​ Handles API errors and logs them.

●​ Returns the created entry or error details.

Example

const response = await contentfulService.createEntry(req);

if (response.status === 201) {

 // Entry created successfully

} else {

 // Handle error

}

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

updateEntry(req: Request): Promise

Updates an existing Contentful entry with the provided data.

Parameters

●​ req (Request): The Express request object containing entry ID and updated data.

Returns

●​ Promise<ContentfulServiceType>: Resolves with the updated entry or error
details.

Throws

●​ BadRequestError: If required data is missing or invalid.

●​ InternalServerError: If an error occurs during the update process.

Process

●​ Extracts entry ID and update data from the request.

●​ Sends a PUT/PATCH request to the Contentful API to update the entry.

●​ Handles API errors and logs them.

●​ Returns the updated entry or error details.

Example

const response = await contentfulService.updateEntry(req);

if (response.status === 200) {

 // Entry updated successfully

} else {

 // Handle error

}

deleteEntry(req: Request): Promise

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Deletes an entry from Contentful by ID.

Parameters

●​ req (Request): The Express request object containing the entry ID.

Returns

●​ Promise<ContentfulServiceType>: Resolves with a success message or error
details.

Throws

●​ BadRequestError: If the entry ID is missing or invalid.

●​ InternalServerError: If an error occurs during the deletion process.

Process

●​ Extracts entry ID from the request.

●​ Sends a DELETE request to the Contentful API.

●​ Handles API errors and logs them.

●​ Returns a success message or error details.

Example

const response = await contentfulService.deleteEntry(req);

if (response.status === 200) {

 // Entry deleted successfully

} else {

 // Handle error

}

Exported Object

export const contentfulService = {

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 getEntries,

 createEntry,

 updateEntry,

 deleteEntry,

};

●​ getEntries: Function to fetch entries from Contentful.

●​ createEntry: Function to create a new entry.

●​ updateEntry: Function to update an existing entry.

●​ deleteEntry: Function to delete an entry.

Error Handling

●​ All errors are logged using the logger utility.

●​ Custom error classes (BadRequestError, InternalServerError,
ExceptionFunction) are used to provide meaningful error messages and status
codes.

contentMapperService
This service provides a set of functions to manage content type and field mappings for
projects, including CRUD operations, reset, and integration with external APIs (such as
Contentstack). It is designed to support content migration, mapping, and validation workflows
in a multi-project environment.

Overview

The contentMapperService is responsible for:

●​ Creating, updating, and deleting content type and field mappings for projects.

●​ Fetching and searching content types and field mappings.

●​ Integrating with Contentstack APIs to fetch content types and global fields.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Resetting mappings to their initial state.

●​ Handling error cases and logging for traceability.

All functions are asynchronous and expect an Express Request object or project ID as input.

Service Functions

putTestData

Description:​

Creates or updates dummy content mapping data for a given project. It processes the provided
content types, assigns unique IDs, and updates the project's mapping references.

Parameters:

●​ req: Request – Express request containing projectId (params) and
contentTypes (body).

Returns:

●​ Updated project data.

Throws:

●​ BadRequestError if the project or content types are not found.

●​ ExceptionFunction for internal errors.

getContentTypes

Description:​

Retrieves content types for a project, with support for pagination and search.

Parameters:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ req: Request – Express request with projectId, skip, limit, and optional
searchText (params).

Returns:

●​ Object with status, count, and contentTypes array.

Throws:

●​ BadRequestError if the project is not found.

●​ ExceptionFunction for internal errors.

getFieldMapping

Description:​

Fetches field mappings for a specific content type, with pagination and search support.

Parameters:

●​ req: Request – Express request with contentTypeId, projectId, skip, limit,
and optional searchText (params).

Returns:

●​ Object with status, count, and fieldMapping array.

Throws:

●​ BadRequestError if the content type is not found.

●​ ExceptionFunction for internal errors.

getExistingContentTypes

Description:​

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Fetches all content types from Contentstack for a given project, and optionally details for a
specific content type.

Parameters:

●​ req: Request – Express request with projectId, optional contentTypeUid
(params), and token_payload (body).

Returns:

●​ Object with contentTypes array and optional selectedContentType.

getExistingGlobalFields

Description:​

Fetches all global fields from Contentstack for a given project, and optionally details for a
specific global field.

Parameters:

●​ req: Request – Express request with projectId, optional globalFieldUid
(params), and token_payload (body).

Returns:

●​ Object with globalFields array and optional selectedGlobalField.

updateContentType

Description:​

Updates a content type and its field mappings for a project. Validates mapping data and
updates the status accordingly.

Parameters:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ req: Request – Express request with orgId, projectId, contentTypeId
(params), and contentTypeData, token_payload (body).

Returns:

●​ Object with status and updated content type data.

Throws:

●​ Returns error object if validation fails or update is not allowed.

resetToInitialMapping

Description:​

Resets the field and content mapping for a specific content type in a project to its initial state.

Parameters:

●​ req: Request – Express request with orgId, projectId, contentTypeId
(params), and token_payload (body).

Returns:

●​ Object with status, message, and reset data.

Throws:

●​ BadRequestError if the project or content type is not found or not in a valid state.

●​ ExceptionFunction for internal errors.

resetAllContentTypesMapping

Description:​

Resets all content type mappings for a project to their initial state.

Parameters:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ projectId: string – Project ID.

Returns:

●​ Project details after reset.

Throws:

●​ BadRequestError if the project or content mapper is not found.

●​ ExceptionFunction for internal errors.

removeMapping

Description:​

Removes all content and field mappings for a project.

Parameters:

●​ projectId: string – Project ID.

Returns:

●​ Project details after removal.

Throws:

●​ BadRequestError if the project is not found.

●​ ExceptionFunction for internal errors.

removeContentMapper

Description:​

Removes all content and field mappings for a project (alternative entry point, expects Request).

Parameters:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ req: Request – Express request with projectId (params).

Returns:

●​ Project details after removal.

Throws:

●​ BadRequestError if the project is not found.

●​ ExceptionFunction for internal errors.

getSingleContentTypes

Description:​

Fetches a single content type from Contentstack for a project.

Parameters:

●​ req: Request – Express request with projectId, contentTypeUid (params), and
token_payload (body).

Returns:

●​ Object with title, uid, and schema of the content type, or error object.

getSingleGlobalField

Description:​

Fetches a single global field from Contentstack for a project.

Parameters:

●​ req: Request – Express request with projectId, globalFieldUid (params), and
token_payload (body).

Returns:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Object with title, uid, and schema of the global field, or error object.

updateContentMapper

Description:​

Updates the content mapper details for a project.

Parameters:

●​ req: Request – Express request with orgId, projectId (params), and
token_payload, content_mapper (body).

Returns:

●​ Object with status and update message.

Throws:

●​ ExceptionFunction for internal errors.

Usage Example

import { contentMapperService } from './services/contentMapper.service';

// Example: Update content type mapping

const result = await contentMapperService.updateContentType(req);

Error Handling

All functions throw or return structured error objects using custom error classes
(BadRequestError, ExceptionFunction). Logging is performed for traceability.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

extension.service.ts
This service provides utility functions for managing extension data during migration
processes. It handles reading, generating, and writing extension configuration files for a given
destination stack.

Dependencies

●​ path: Node.js module for handling file and directory paths.

●​ fs: Node.js file system module for reading and writing files.

●​ MIGRATION_DATA_CONFIG, LIST_EXTENSION_UID: Constants used for
configuration and logic branching.

Constants

●​ CUSTOM_MAPPER_FILE_NAME: Name of the custom mapper file (from config).

●​ EXTENSION_APPS_DIR_NAME: Directory name for extension apps (from config).

●​ EXTENSION_APPS_FILE_NAME: File name for extension apps (from config).

Functions
writeExtFile({ destinationStackId, extensionData })

Description:​

Writes the provided extension data to a JSON file in the appropriate directory for the given
destination stack. If the directory does not exist, it is created recursively.

Parameters:

●​ destinationStackId (string): The ID of the destination stack.

●​ extensionData (object): The extension data to be written.

Behavior:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Ensures the target directory exists (creates it if not).

●​ Writes the extension data as a formatted JSON file.

●​ Logs errors to the console if directory creation or file writing fails.

getExtension({ uid, destinationStackId })

Description:​

Retrieves extension metadata for a given UID and destination stack. If the UID matches
LIST_EXTENSION_UID, returns a hardcoded extension object; otherwise, returns null.

Parameters:

●​ uid (string): The extension UID.

●​ destinationStackId (string): The ID of the destination stack.

Returns:

●​ An extension object if the UID matches LIST_EXTENSION_UID.

●​ null otherwise.

createExtension({ destinationStackId })

Description:​

Reads the custom mapper file for the given destination stack, extracts unique extension UIDs,
retrieves their metadata, and writes the combined extension data to a file.

Parameters:

●​ destinationStackId (string): The ID of the destination stack.

Behavior:

●​ Reads the custom mapper file (if it exists).

●​ Parses the file to extract unique extension UIDs.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ For each UID, retrieves extension metadata using getExtension.

●​ Aggregates all extension data and writes it using writeExtFile.

Exported Object
extensionService

Description:​

Exports the main service function(s) for use in other modules.

Properties:

●​ createExtension: The function to generate and write extension data for a stack.

Usage Example:

import { extensionService } from './services/extension.service';

await extensionService.createExtension({ destinationStackId:
'your_stack_id' });

Error Handling
●​ All file system operations are wrapped in try/catch blocks.

●​ Errors during directory creation or file writing are logged to the console.

●​ If the custom mapper file does not exist, the process is silently skipped.

Notes
●​ The extension metadata for LIST_EXTENSION_UID is hardcoded and includes a

sample HTML/Angular-based UI extension.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ The service assumes a specific directory structure and naming convention as
defined in MIGRATION_DATA_CONFIG.

●​ All file operations are asynchronous and use Promises.

marketplace.service.ts
This service provides utilities for managing marketplace app manifests during migration
processes. It handles grouping extensions by app, removing sensitive keys, fetching app
manifests, and writing the final manifest file for a destination stack.

Imports

●​ path: Node.js module for handling file paths.

●​ fs: Node.js module for file system operations.

●​ getAuthtoken: Utility to fetch authentication tokens.

●​ MIGRATION_DATA_CONFIG, KEYTOREMOVE: Constants for migration configuration
and keys to remove from objects.

●​ getAppManifestAndAppConfig: Utility to fetch app manifest and configuration from
the marketplace.

●​ uuidv4: Utility to generate unique identifiers.

Constants

●​ EXTENSIONS_MAPPER_DIR_NAME, MARKETPLACE_APPS_DIR_NAME,
MARKETPLACE_APPS_FILE_NAME: Directory and file names used for storing
migration data, sourced from MIGRATION_DATA_CONFIG.

Helper Functions

groupByAppUid(data: any): object

Groups extension UIDs by their associated app UID.

●​ Parameters:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

○​ data: Array of extension mapping objects, each containing appUid and
extensionUid.

●​ Returns:

○​ An object where each key is an appUid and the value is an array of
associated extensionUids.

removeKeys(obj: object, keysToRemove: string[]): object

Removes specified keys from an object.

●​ Parameters:

○​ obj: The source object.

○​ keysToRemove: Array of keys to remove from the object.

●​ Returns:

○​ A new object with the specified keys removed.

writeManifestFile({ destinationStackId, appManifest })

Writes the app manifest array to a JSON file in the appropriate directory for the destination
stack.

●​ Parameters:

○​ destinationStackId: The target stack's unique identifier.

○​ appManifest: Array of app manifest objects to write.

●​ Behavior:

○​ Ensures the directory exists (creates it if not).

○​ Writes the manifest as a formatted JSON file.

Main Function

createAppManifest({ destinationStackId, region, userId, orgId })

Generates and writes a marketplace app manifest for a given destination stack.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Parameters:

1.​ destinationStackId: Target stack UID.

2.​ region: API region.

3.​ userId: User UID for authentication.

4.​ orgId: Organization UID.

●​ Process:

1.​ Fetches an authentication token.

2.​ Reads the extension-to-app mapping file for the destination stack.

3.​ Groups extensions by app UID.

4.​ For each app:

■​ Fetches the app manifest and configuration.

■​ Removes sensitive keys.

■​ Maps extension UIDs to their UI locations.

■​ Adds a config location if present.

■​ Sets status and target information.

■​ Removes sensitive keys again and adds to the manifest array.

5.​ Writes the final manifest array to the stack's manifest file.

Exported Service

export const marketPlaceAppService = {

 createAppManifest

}

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Example Usage
import { marketPlaceAppService } from './services/marketplace.service';

await marketPlaceAppService.createAppManifest({

 destinationStackId: 'your-stack-id',

 region: 'us',

 userId: 'user-uid',

 orgId: 'org-uid'

});

Notes
●​ The service expects the extension mapping file to be present and formatted

correctly.

●​ Sensitive or unnecessary keys are removed from manifest objects using the
KEYTOREMOVE constant.

●​ The manifest file is written as a pretty-printed JSON for readability.

●​ Error handling is present for file system operations, but you may want to enhance it
for production use.

Migration Service
This service provides core migration-related operations for managing test and production
stacks, handling migrations from legacy CMSs, and managing project locale data. It interacts
with various utility and service modules to orchestrate stack creation, deletion, migration, and
logging.

createTestStack

Creates a new test stack for a given project and organization.

Parameters:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ req: Request​

Express request object containing:

○​ params.orgId: Organization ID

○​ params.projectId: Project ID

○​ body.name: Name for the stack

○​ body.token_payload: Auth token payload (region, user_id, etc.)

Returns:​

Promise<LoginServiceType>

●​ On success: Object with stack data and dashboard URL.

●​ On failure: Object with error data and status.

Throws:

●​ ExceptionFunction if stack creation fails due to API or internal errors.

Side Effects:

●​ Updates the project in the database with the new test stack and step.

deleteTestStack

Deletes a test stack associated with a project.

Parameters:

●​ req: Request​

Express request object containing:

○​ params.projectId: Project ID

○​ body.token_payload: Auth token payload

○​ body.stack_key: API key of the stack to delete

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Returns:​

Promise<LoginServiceType>

●​ On success: Object with deletion response data.

●​ On failure: Object with error data and status.

Throws:

●​ ExceptionFunction if deletion fails due to API or internal errors.

Side Effects:

●​ Updates the project in the database to remove the test stack.

startTestMigration

Initiates a test migration for a project’s test stack.​

Executes migration steps based on the legacy CMS type (Sitecore, WordPress, Contentful).

Parameters:

●​ req: Request​

Express request object containing:

○​ params.orgId: Organization ID

○​ params.projectId: Project ID

○​ body.token_payload: Auth token payload

Returns:​

Promise<any>

Throws:

●​ Propagates errors from underlying migration steps.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Side Effects:

●​ Writes migration logs.

●​ Updates stack with migrated content, locales, assets, and extensions.

startMigration

Initiates the final migration for a project’s production stack.​

Executes migration steps based on the legacy CMS type (Sitecore, WordPress, Contentful).

Parameters:

●​ req: Request​

Express request object containing:

○​ params.orgId: Organization ID

○​ params.projectId: Project ID

○​ body.token_payload: Auth token payload

Returns:​

Promise<any>

Throws:

●​ Propagates errors from underlying migration steps.

Side Effects:

●​ Marks migration as started in the project.

●​ Writes migration logs.

●​ Updates stack with migrated content, locales, assets, and extensions.

getLogs

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Retrieves and parses migration logs for a given project and stack.

Parameters:

●​ req: Request​

Express request object containing:

○​ params.projectId: Project ID

○​ params.stackId: Stack ID

Returns:​

Promise<any[]>

●​ Array of parsed log entries.

Throws:

●​ BadRequestError if the projectId or stackId is invalid or logs are not found.

●​ ExceptionFunction for internal errors.

createSourceLocales

Stores or updates the source locales fetched from the legacy CMS in the project database.

Parameters:

●​ req: Request​

Express request object containing:

○​ params.projectId: Project ID

○​ body.locale: Array of locale codes

Returns:​

Promise<void>

Throws:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ ExceptionFunction if the project ID is invalid or DB update fails.

Side Effects:

●​ Updates the source_locales field in the project.

updateLocaleMapper

Updates the mapped locales and master locale in the project database.

Parameters:

●​ req: Request​

Express request object containing:

○​ params.projectId: Project ID

○​ body: Object with master_locale and locales mapping

Returns:​

Promise<void>

Throws:

●​ ExceptionFunction if the project ID is invalid or DB update fails.

Side Effects:

●​ Updates the master_locale and locales fields in the project.

Exported Service

export const migrationService = {

 createTestStack,

 deleteTestStack,

 startTestMigration,

 startMigration,

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 getLogs,

 createSourceLocales,

 updateLocaleMapper,

};

Error Handling

All functions log errors using the logger utility and throw custom exceptions
(ExceptionFunction or BadRequestError) with appropriate status codes and messages.

Dependencies

●​ Project database (Lowdb)

●​ Various CMS-specific services (Sitecore, WordPress, Contentful)

●​ Utility modules for logging, authentication, HTTP requests, and file operations

org.service.ts
This service provides organization-related operations for interacting with the Contentstack
API, including stack management, locale retrieval, and organization details. It handles
authentication, error logging, and response formatting for each operation.

Dependencies

●​ express.Request: For handling HTTP requests.

●​ config: Application configuration, including Contentstack API endpoints.

●​ safePromise, getLogMessage: Utility functions for error handling and logging.

●​ https: HTTP client utility for making API requests.

●​ LoginServiceType: Type definition for service responses.

●​ getAuthtoken: Utility for retrieving authentication tokens.

●​ logger: Logging utility.

●​ HTTP_TEXTS, HTTP_CODES: Constants for HTTP status codes and messages.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ ExceptionFunction, BadRequestError: Custom error classes.

●​ ProjectModelLowdb: Local database model for project and stack filtering.

Functions

getAllStacks

Retrieves all stacks for a given organization, with optional search and filtering based on
local project data.

Parameters:

●​ req: Request – Express request object, expects orgId and optional
searchText in params, and token_payload in body.

Returns:

●​ Promise<LoginServiceType> – Object containing stack data and HTTP status.

Behavior:

●​ Authenticates the user and fetches stacks from Contentstack.

●​ Optionally filters stacks by search text (name/description).

●​ Further filters out stacks already present in local project data.

●​ Handles and logs errors, returning error data and status if the API call fails.

createStack

Creates a new stack in the specified organization.

Parameters:

●​ req: Request – Express request object, expects orgId in params, and
token_payload, name, description, master_locale in body.

Returns:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Promise<LoginServiceType> – Object containing the created stack data and
HTTP status.

Behavior:

●​ Authenticates the user and sends a POST request to create a stack.

●​ Handles and logs errors, returning error data and status if the API call fails.

getLocales

Retrieves all locales available in the Contentstack region.

Parameters:

●​ req: Request – Express request object, expects token_payload in body.

Returns:

●​ Promise<LoginServiceType> – Object containing locale data and HTTP
status.

Behavior:

●​ Authenticates the user and fetches locales from Contentstack.

●​ Handles and logs errors, returning error data and status if the API call fails.

getStackStatus

Checks the status of a specific stack by verifying its existence and retrieving a count of its
content types.

Parameters:

●​ req: Request – Express request object, expects orgId in params, and
token_payload, stack_api_key in body.

Returns:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Promise<{ status: number, data: any }> – Object containing the status
and content type count.

Behavior:

●​ Authenticates the user and verifies the stack exists in the organization.

●​ Fetches content type count for the stack.

●​ Handles and logs errors, returning error data and status if the API call fails or
stack is not found.

getStackLocale

Retrieves all locales for a specific stack.

Parameters:

●​ req: Request – Express request object, expects token_payload,
stack_api_key in body.

Returns:

●​ Promise<{ status: number, data: any }> – Object containing the status
and locale data.

Behavior:

●​ Authenticates the user and fetches locales for the specified stack.

●​ Handles and logs errors, returning error data and status if the API call fails.

getOrgDetails

Retrieves details and plan information for a specific organization.

Parameters:

●​ req: Request – Express request object, expects orgId in params, and
token_payload in body.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Returns:

●​ Promise<{ status: number, data: any }> – Object containing the status
and organization details.

Behavior:

●​ Authenticates the user and fetches organization details from Contentstack.

●​ Handles and logs errors, returning error data and status if the API call fails.

Error Handling
●​ All functions use safePromise to handle async errors gracefully.

●​ Errors are logged using the logger utility with contextual information.

●​ API errors are returned with their status and message.

●​ Unhandled errors throw an ExceptionFunction with a generic or specific error
message and status code.

Export
export const orgService = {

 getAllStacks,

 getLocales,

 createStack,

 getStackStatus,

 getStackLocale,

 getOrgDetails,

};

Usage Example

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

import { orgService } from './services/org.service';

// Example: Get all stacks for an organization

app.get('/org/:orgId/stacks', async (req, res) => {

 const result = await orgService.getAllStacks(req);

 res.status(result.status).json(result.data);

});

Project Service (projects.service.ts)
This service provides a set of functions to manage project lifecycle operations in a
multi-tenant, region-aware environment. It interacts with a Lowdb-based data store and
supports CRUD operations, stepper-based workflow progression, and related project utilities.

Overview

The Project Service is responsible for all business logic related to project management,
including creation, retrieval, update, deletion, and workflow progression. It ensures that all
operations are performed in the context of the authenticated user, organization, and region,
and enforces stepper-based workflow rules.

Service Functions

getAllProjects

getAllProjects(req: Request): Promise<Project[]>

●​ Retrieves all non-deleted projects for the given organization, region, and user.

●​ Throws NotFoundError if no projects are found.

getProject

getProject(req: Request): Promise<Project>

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Retrieves a single project by orgId, projectId, region, and owner.

●​ Throws NotFoundError if the project is not found.

createProject

createProject(req: Request): Promise<{ status: string, message: string,
project: Partial<Project> }>

●​ Creates a new project with initial stepper and status values.

●​ Returns a summary of the created project.

●​ Throws ExceptionFunction on error.

updateProject

updateProject(req: Request): Promise<{ status: string, message: string,
project: Partial<Project> }>

●​ Updates project fields such as name, description, stack details, and mapper keys.

●​ Throws ExceptionFunction on error.

updateLegacyCMS

updateLegacyCMS(req: Request): Promise<{ status: number, data: { message:
string } }>

●​ Updates the legacy CMS configuration for a project.

●​ Throws BadRequestError if the project is in a non-editable state.

●​ Throws ExceptionFunction on error.

updateAffix

updateAffix(req: Request): Promise<{ status: number, data: { message:
string } }>

●​ Updates the affix property in the project's legacy CMS section.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

affixConfirmation

affixConfirmation(req: Request): Promise<{ status: number, data: {
message: string } }>

●​ Updates the affix_confirmation property in the project's legacy CMS section.

updateFileFormat

updateFileFormat(req: Request): Promise<{ status: number, data: { message:
string } }>

●​ Updates file format and related AWS details for the project's legacy CMS.

●​ Throws BadRequestError if the project is in a non-editable state.

●​ Throws ExceptionFunction on error.

fileformatConfirmation

fileformatConfirmation(req: Request): Promise<{ status: number, data: {
message: string } }>

●​ Updates the file_format_confirmation property in the project's legacy CMS
section.

updateDestinationStack

updateDestinationStack(req: Request): Promise<{ status: number, data: {
message: string } }>

●​ Updates the destination stack for a project after validating the stack exists via an
external API.

●​ Throws BadRequestError if the project is in a non-editable state or stack is not
found.

●​ Throws ExceptionFunction on error.

updateCurrentStep

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

updateCurrentStep(req: Request): Promise<Project>

●​ Progresses the project to the next step in the workflow, enforcing stepper and
status rules.

●​ Throws BadRequestError if the current step cannot be updated.

●​ Throws ExceptionFunction on error.

deleteProject

deleteProject(req: Request): Promise<{ status: number, data: { message:
string } }>

●​ Soft-deletes a project by setting isDeleted to true, or hard-deletes if the project is
completed.

●​ Also deletes related content mappers and field mappings if applicable.

●​ Throws NotFoundError if the project is not found.

revertProject

revertProject(req: Request): Promise<{ status: number, data: { message:
string, Project: Project } }>

●​ Reverts a soft-deleted project by setting isDeleted to false.

●​ Throws NotFoundError if the project is not found.

updateStackDetails

updateStackDetails(req: Request): Promise<{ status: number, data: {
message: string } }>

●​ Updates the stack details for a project.

●​ Throws ExceptionFunction on error.

updateContentMapper

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

updateContentMapper(req: Request): Promise<{ status: number, data: {
message: string } }>

●​ Updates the content mapper details for a project.

●​ Throws ExceptionFunction on error.

updateMigrationExecution

updateMigrationExecution(req: Request): Promise<{ status: number, data: {
message: string } }>

●​ Sets the migration_execution flag to true for a project.

●​ Throws ExceptionFunction on error.

getMigratedStacks

getMigratedStacks(req: Request): Promise<{ status: number,
destinationStacks: string[] }>

●​ Returns the destination_stack_id of all completed projects (status and step
both at 5).

●​ Throws ExceptionFunction on error.

Error Handling

●​ All functions throw custom errors (BadRequestError, NotFoundError,
ExceptionFunction) for consistent error handling.

●​ Errors are logged with context for easier debugging.

Logging

●​ All major operations are logged using the logger utility, including both successes
and failures, with contextual information such as function name, project ID, and user
details.

Exports

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

The service exports all functions as a single object:

export const projectService = {

 getAllProjects,

 getProject,

 createProject,

 updateProject,

 updateLegacyCMS,

 updateAffix,

 affixConfirmation,

 updateFileFormat,

 fileformatConfirmation,

 updateDestinationStack,

 updateCurrentStep,

 deleteProject,

 revertProject,

 updateStackDetails,

 updateContentMapper,

 updateMigrationExecution,

 getMigratedStacks

};

Usage Example
import { projectService } from './services/projects.service';

// Example: Creating a project

const result = await projectService.createProject(req);

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

console.log(result.status, result.message, result.project);

Notes
●​ All functions expect a standard Express Request object, with required parameters

and a token_payload in the request body for authentication and authorization.

●​ The service is designed to be used in an Express.js controller or route handler
context.

●​ The stepper logic enforces a strict workflow for project progression.

src/services/runCli.service.ts

Log Level Detection:​

●​ The service analyzes CLI output to classify log entries as info, warn, or error for
structured logging.

ANSI Stripping:​

●​ Removes color codes from CLI output before writing to log files, ensuring clean
logs.

Backup and Logging:​

●​ Before migration, the service creates a backup of the source data and sets up log
files for both backup and main migration logs.

CLI Execution:​

●​ Uses Node's spawn to run CLI commands asynchronously, streaming output to both
the console and log files.

Project Status Management:​

●​ Updates the local project database to reflect migration progress, supporting both
test and production workflows.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Authentication:​

●​ Reads user authentication data and configures the CLI session accordingly.

Usage
Import and use the runCli function to trigger a migration:

import { utilsCli } from './services/runCli.service';

await utilsCli.runCli(

 'NA', // region

 'user_id_123', // user ID

 'stack_uid_abc', // stack UID

 'project_id_xyz', // project ID

 false, // isTest

 '/path/to/log.log' // log file path

);

Note:

●​ The service expects certain directory structures and configuration constants to be
defined in your project.

●​ Log files are written in JSON lines format for easy parsing and UI integration.

●​ The service is designed to be robust for both test and production migrations, with
clear separation of concerns and error handling.

Sitecore Service (sitecore.service.ts)
This service provides a set of utilities for transforming, migrating, and saving Sitecore content,
assets, and locale data into a structure suitable for further processing or import into another

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

system (such as Contentstack). It handles reading Sitecore export packages, extracting and
transforming entries and assets, mapping locales, and writing the processed data to disk.

Dependencies

●​ Node.js core modules: fs, path

●​ Third-party modules: fs-readdir-recursive, uuid, lodash

●​ Project utilities: Constants, entry field creators, logging, path sanitization, and
organization service

Exported Service Methods

1. createEntry

async function createEntry({

 packagePath,

 contentTypes,

 master_locale,

 destinationStackId,

 projectId,

 keyMapper,

 project,

}): Promise<boolean>

Description:​

Transforms Sitecore content entries into a new format, mapping fields and locales, and writes
them to disk. Also triggers asset extraction and transformation.

Parameters:

●​ packagePath (string): Path to the root of the Sitecore export package.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ contentTypes (Array): List of content type definitions with field mappings.

●​ master_locale (string, optional): The master locale code.

●​ destinationStackId (string): Target stack identifier for output directory
structure.

●​ projectId (string): Project identifier for logging.

●​ keyMapper (object): Maps Sitecore template IDs to Contentstack UIDs.

●​ project (object): Project configuration, including locales.

Returns:​

Promise<boolean> — Returns true on success, logs errors otherwise.

Key Implementation Details:

●​ Reads and transforms all entries for each content type and locale.

●​ Maps Sitecore field keys to Contentstack field UIDs.

●​ Handles asset references and field value transformations.

●​ Writes each entry and its locale data to a structured directory.

●​ Logs progress and errors using a custom logger.

2. createAssets

async function createAssets({

 packagePath,

 baseDir,

 destinationStackId,

 projectId,

}): Promise<object>

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Description:​

Extracts, transforms, and saves Sitecore assets (media files) to disk, and generates a
metadata JSON for all assets.

Parameters:

●​ packagePath (string): Path to the Sitecore export package.

●​ baseDir (string): Base directory for output.

●​ destinationStackId (string): Target stack identifier.

●​ projectId (string): Project identifier for logging.

Returns:​

Promise<object> — Returns an object mapping asset UIDs to their metadata.

Key Implementation Details:

●​ Reads asset metadata and binary blobs from the Sitecore package.

●​ Normalizes asset IDs and filenames.

●​ Writes asset files and metadata to the output directory.

●​ Logs asset processing status and errors.

3. createLocale

async function createLocale(

 req: any,

 destinationStackId: string,

 projectId: string,

 project: any

): Promise<void>

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Description:​

Generates and writes locale configuration files based on the project and organization settings.

Parameters:

●​ req (any): Request object for organization service (used to fetch locales).

●​ destinationStackId (string): Target stack identifier.

●​ projectId (string): Project identifier for logging.

●​ project (object): Project configuration, including locales.

Returns:​

Promise<void>

Key Implementation Details:

●​ Fetches locale names from the organization service.

●​ Generates unique UIDs for each locale.

●​ Writes master and additional locale files to disk.

●​ Logs locale creation status and errors.

4. createVersionFile

async function createVersionFile(destinationStackId: string):
Promise<void>

Description:​

Writes a version info file to the output directory, indicating the content version and logs path.

Parameters:

●​ destinationStackId (string): Target stack identifier.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Returns:​

Promise<void>

Helper Functions
idCorrector

Normalizes Sitecore IDs by removing dashes and braces, and converting to lowercase.

uidCorrector

Normalizes UIDs by replacing spaces and dashes with underscores, prepending with 'a' if the
UID starts with a number, and converting to lowercase.

AssetsPathSplitter

Extracts the relative asset path from a full Sitecore asset path.

mapLocales

Maps a locale code to its corresponding key in the locales object, handling master locale
mapping.

writeFiles and writeOneFile

Utility functions for writing entry and locale files to disk, ensuring directories exist.

Directory Structure
●​ Entries: Saved under DATA/STACK_ID/entries/CONTENT_TYPE/LOCALE/

●​ Assets: Saved under DATA/STACK_ID/assets/files/ASSET_UID/

●​ Locales: Saved under DATA/STACK_ID/locales/

●​ Version Info: Saved under DATA/STACK_ID/EXPORT_INFO_FILE

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Logging
All major operations (entry transformation, asset processing, locale creation) are logged using
a custom logger, with both info and error levels, including contextual messages for traceability.

Error Handling
●​ All file operations are wrapped in try/catch blocks or error callbacks.

●​ Errors are logged to the console and to the custom logger for later review.

Export
The service is exported as a singleton object:

export const siteCoreService = {

 createEntry,

 createAssets,

 createLocale,

 createVersionFile,

};

Note:​

This service is designed for use in a Node.js environment and expects Sitecore export
packages to follow a specific directory and file naming convention. It is intended to be used as
part of a migration or integration pipeline.

User Service (user.service.ts)
This service provides user-related operations, primarily focused on retrieving user profile
information from an external API, based on authentication and request context.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Overview

The userService module exposes methods to interact with user data, specifically to fetch a
user's profile and their associated organizations and roles. It integrates with authentication
models and external APIs, handling errors and logging as needed.

Dependencies

●​ Express Request: For accessing request data and token payloads.

●​ Configuration: Uses API endpoints and settings from the app's config.

●​ HTTPS Utility: For making HTTP requests to external services.

●​ Authentication Model: For reading and validating user authentication data.

●​ Custom Errors: For standardized error handling.

●​ Logger: For error and event logging.

●​ Utility Functions: For safe promise handling and log message formatting.

Functions

getUserProfile

const getUserProfile = async (req: Request): Promise<LoginServiceType>

Description:​

Retrieves the user profile for the authenticated user making the request. It checks the
authentication model for the user, fetches the profile from an external API, and returns
structured user data including organizations where the user has admin roles.

Parameters:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ req: Request​

The Express request object, expected to contain a token_payload in the request
body.

Returns:​

A Promise<LoginServiceType> resolving to an object containing user profile data and HTTP
status.

Throws:

●​ BadRequestError if the user is not found in the authentication model or the
external API response.

●​ ExceptionFunction for any other errors encountered during the process.

Process:

1.​ Reads the authentication model to ensure user data is loaded.

2.​ Locates the user by user_id and region from the token payload.

3.​ If the user is not found, throws a BadRequestError.

4.​ Makes a GET request to the external API to fetch the user profile, including
organizations and roles.

5.​ Handles errors from the API call, logging them and returning the error response.

6.​ Extracts organizations where the user has admin roles.

7.​ Returns the user's email, first name, last name, and admin organizations.

Error Handling

User Not Found:​

●​ If the user is not present in the authentication model or the API response, a
BadRequestError is thrown with a relevant message.

External API Errors:​

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ If the API call fails, the error is logged and the error response is returned.

Unexpected Errors:​

●​ Any other errors are logged and rethrown as an ExceptionFunction with a generic
internal error message and status code.

Usage Example

import { userService } from './services/user.service';

// Express route handler example

app.get('/profile', async (req, res, next) => {

 try {

 const profile = await userService.getUserProfile(req);

 res.status(profile.status).json(profile.data);

 } catch (error) {

 next(error);

 }

});

Exports

●​ userService:​
An object containing the getUserProfile function.

WordPress Service

This service provides a set of utilities for migrating WordPress data (posts, authors, assets,
categories, tags, terms, references, etc.) into a Contentstack-compatible format. It handles
reading, transforming, and writing data, as well as managing directories and logging.

Overview

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

The service is organized into several modules, each responsible for a specific aspect of the
migration process:

●​ Locale Management

●​ Asset Management

●​ Reference Management

●​ Chunk Management

●​ Author Management

●​ Content Type Management

●​ Term, Tag, and Category Management

●​ Post Management

●​ Global Fields Management

●​ Version File Management

Modules and Functions

Locale Management

createLocale(req, destinationStackId, projectId, project)

Creates locale files and directories for the destination stack, including the master locale and
all additional locales. Logs the process and handles errors.

●​ Parameters:

○​ req: Request object for API calls.

○​ destinationStackId: Target stack ID.

○​ projectId: Project identifier.

○​ project: Project configuration object.

Asset Management

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

getAllAssets(affix, packagePath, destinationStackId, projectId)

Reads WordPress export data, filters for attachments, and downloads assets to the local
filesystem. Handles retries and logs failures.

●​ Parameters:

○​ affix: String to prefix asset IDs.

○​ packagePath: Path to the WordPress export file.

○​ destinationStackId: Target stack ID.

○​ projectId: Project identifier.

createAssetFolderFile(affix, destinationStackId, projectId)

Creates a folder JSON file for assets, used for organizing assets in Contentstack.

Reference Management

getAllreference(affix, packagePath, destinationStackId, projectId)

Processes and saves references (categories, terms, tags) from the WordPress export.

Chunk Management

extractChunks(affix, packagePath, destinationStackId, projectId)

Splits large post datasets into manageable chunks for processing and migration.

Author Management

getAllAuthors(affix, packagePath, destinationStackId, projectId,
contentTypes, keyMapper, master_locale, project)

Extracts and saves author data, creating locale-specific files and indexes.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Content Type Management

extractContentTypes(projectId, destinationStackId)

Generates and saves Contentstack content type schemas for authors, categories, tags, terms,
and posts.

Term, Tag, and Category Management

getAllTerms(affix, packagePath, destinationStackId, projectId,
contentTypes, keyMapper, master_locale, project)

Extracts and saves term data.

getAllTags(affix, packagePath, destinationStackId, projectId,
contentTypes, keyMapper, master_locale, project)

Extracts and saves tag data.

getAllCategories(affix, packagePath, destinationStackId, projectId,
contentTypes, keyMapper, master_locale, project)

Extracts and saves category data.

Post Management

extractPosts(packagePath, destinationStackId, projectId, contentTypes,
keyMapper, master_locale, project)

Processes post data in chunks, transforms it to Contentstack format, and writes
locale-specific files.

Global Fields Management

extractGlobalFields(destinationStackId, projectId)

Copies global field and locale folders from a source directory to the migration data directory.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Version File Management

createVersionFile(destinationStackId, projectId)

Creates a version file in the migration data directory to track the content version.

Helper Functions

●​ mapContentTypeToEntry(contentType, data): Maps WordPress data fields to
Contentstack fields based on a field mapping configuration.

●​ writeFileAsync(filePath, data, tabSpaces): Writes data to a file
asynchronously.

●​ idCorrector(id): Normalizes and formats IDs for consistency.

●​ convertHtmlToJson(htmlString): Converts HTML to Contentstack JSON RTE
format.

●​ convertJsonToHtml(json): Converts Contentstack JSON RTE to HTML.

●​ getParent(data, id): Finds and returns parent reference objects for categories,
terms, or tags.

Exported Service

The following functions are exported as part of the wordpressService object:

export const wordpressService = {

 getAllAssets,

 createLocale,

 createAssetFolderFile,

 getAllreference,

 extractChunks,

 getAllAuthors,

 extractContentTypes,

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 getAllTerms,

 getAllTags,

 getAllCategories,

 extractPosts,

 extractGlobalFields,

 createVersionFile

};

Usage Example
import { wordpressService } from './services/wordpress.service';

// Example: Extract all posts from a WordPress export

await wordpressService.extractPosts(

 'path/to/wordpress-export.json',

 'destinationStackId',

 'projectId',

 contentTypes,

 keyMapper,

 'en-us',

 projectConfig

);

async-router.utils.ts
Utility for handling errors in asynchronous Express route handlers.

Overview

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

When working with Express, asynchronous route handlers that throw errors or reject promises
do not automatically pass those errors to the Express error handler. This utility provides a
wrapper function, asyncRouter, that ensures any errors thrown in an async route handler are
properly forwarded to the next middleware (typically, the error handler).

Usage

Import the asyncRouter function and use it to wrap your async route handlers:

import { asyncRouter } from './utils/async-router.utils';

app.get('/example', asyncRouter(async (req, res, next) => {

 // Your async logic here

 const data = await someAsyncFunction();

 res.json(data);

}));

API

asyncRouter

asyncRouter(fn: (req: Request, res: Response, next: NextFunction) =>
Promise<any>): (req: Request, res: Response, next: NextFunction) => void

Parameters

●​ fn: An asynchronous function (route handler) that takes req, res, and next as
arguments.

Returns

●​ A middleware function that executes the async function and catches any errors,
passing them to Express's next function.

Example

import { asyncRouter } from './utils/async-router.utils';

router.post('/users', asyncRouter(async (req, res) => {

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 const user = await createUser(req.body);

 res.status(201).json(user);

}));

Implementation
import { Request, Response, NextFunction } from "express";

/**

 * Wraps an async function to handle errors and pass them to the Express
error handler.

 * @param fn - The async function to be wrapped.

 * @returns A middleware function that handles async errors.

 */

export const asyncRouter =

 (fn: any) => (req: Request, res: Response, next: NextFunction) => {

 Promise.resolve(fn(req, res, next)).catch(next);

 };

Notes

●​ This utility is especially useful for keeping your route handlers clean and avoiding
repetitive try/catch blocks.

●​ It works with any async function that follows the Express middleware signature.

auth.utils.ts

Utility for retrieving a user's authentication token based on region and user ID.

Overview

This utility provides a single asynchronous function that fetches the authentication token for a
user in a specified region. It interacts with the AuthenticationModel to locate the user and
extract their token. If the user is not found or the token is missing, it throws an
UnauthorizedError.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Function Signature

/**

 * Retrieves the authentication token for a given user in a specific
region.

 * @param region - The region of the user.

 * @param userId - The ID of the user.

 * @returns The authentication token for the user.

 * @throws UnauthorizedError if the user is not found or the
authentication token is missing.

 */

export default async (region: string, userId: string): Promise<string>

Parameters

region (string):​

●​ The region associated with the user whose authentication token is being requested.

userId (string):​

●​ The unique identifier of the user.

Returns

●​ Promise:​
Resolves to the authentication token for the specified user.

Throws

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ UnauthorizedError:​
Thrown if the user cannot be found in the specified region or if the authentication
token is missing.

Example Usage

import getAuthToken from "./utils/auth.utils";

try {

 const token = await getAuthToken("us-east", "user-123");

 // Use the token for further authentication

} catch (error) {

 if (error instanceof UnauthorizedError) {

 // Handle unauthorized access

 }

}

Implementation Details

●​ The function first ensures the authentication data is loaded by calling
AuthenticationModel.read().

●​ It searches for the user in the users array by matching both region and user_id.

●​ If a matching user is found, it retrieves the authtoken property.

●​ If the user is not found or the token is missing, it throws an UnauthorizedError.

Content Type Creator Utilities
This module provides utility functions for transforming, mapping, and saving Contentstack
content types and global fields during migration or integration processes. It handles schema
conversion, UID correction, group arrangement, and file operations for content type
definitions.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Interfaces
Group

Represents a group field in a content type schema.

interface Group {

 data_type: string;

 display_name?: string;

 field_metadata: Record<string, any>;

 schema: any[];

 uid?: string;

 multiple: boolean;

 mandatory: boolean;

 unique: boolean;

}

ContentType

Represents a content type with a title, UID, and schema.

interface ContentType {

 title: string | undefined;

 uid: string | undefined;

 schema: any[];

}

Helper Functions
extractFieldName(input: string): string

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Extracts and cleans the field name from a string, removing "-App" and extracting text inside
parentheses.

extractValue(input: string, prefix: string, another: string): any

Extracts a value from a string based on a prefix and a separator.

startsWithNumber(str: string): boolean

Checks if a string starts with a number.

uidCorrector({ uid }: any): string

Normalizes UIDs by replacing spaces and hyphens with underscores and prepending 'a_' if the
UID starts with a number.

Schema Conversion
arrangGroups({ schema, newStack }: any): any[]

Arranges group fields and their nested schema from a flat schema array.

convertToSchemaFormate({ field, advanced = true, marketPlacePath }: any):
any

Converts a field mapping object to the target schema format for Contentstack, handling all
supported field types (text, boolean, json, dropdown, radio, checkbox, file, link, multi_line_text,
markdown, number, isodate, global_field, reference, html, app, extension, and default).

File Operations
saveAppMapper({ marketPlacePath, data, fileName }: any): Promise<void>

Ensures the marketplace directory exists and appends app/extension mapping data to a file.

saveContent(ct: any, contentSave: string): Promise<void>

Saves a content type schema to a file and appends it to a master schema file.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

writeGlobalField(schema: any, globalSave: string): Promise<void>

Saves a global field schema to a file, appending it to a global fields file.

Content Type Processing
existingCtMapper({ keyMapper, contentTypeUid, projectId, region, user_id
}: any): Promise<any>

Fetches the existing content type schema from Contentstack using a mapping and service call.

mergeArrays(a: any[], b: any[]): Promise<any[]>

Merges two arrays of fields, avoiding duplicates by UID and data type.

mergeTwoCts(ct: any, mergeCts: any): Promise<any>

Merges two content type schemas, combining their fields and groups.

Exported Function
contenTypeMaker

Main function to transform and save a content type or global field.

export const contenTypeMaker = async ({

 contentType,

 destinationStackId,

 projectId,

 newStack,

 keyMapper,

 region,

 user_id

}: any) => { ... }

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Parameters

●​ contentType: The source content type object to transform.

●​ destinationStackId: The target stack ID for saving files.

●​ projectId: The project ID for logging.

●​ newStack: Boolean indicating if this is a new stack migration.

●​ keyMapper: Mapping of source to destination content type UIDs.

●​ region: Contentstack region.

●​ user_id: User ID for API/service calls.

Workflow

1.​ Setup Paths: Determines the save paths for content types and global fields.

2.​ Existing Content Type: If a mapping exists, fetches the current content type schema
for merging.

3.​ Schema Transformation: Arranges groups and converts each field to the target
schema format.

4.​ Merging: If an existing content type is found, merges the new and existing schemas.

5.​ Saving: Writes the transformed schema to the appropriate file (content type or
global field).

6.​ Logging: Logs the transformation result.

api/src/utils/custom-errors.utils.ts

Custom Error Utilities

This module provides a set of custom error classes for handling various error scenarios in your
application. Each error class extends the base AppError class and is associated with a specific
HTTP status code and message. These custom errors help standardize error handling and
improve the clarity of error responses throughout the codebase.

AppError

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

export class AppError extends Error

The base class for all custom application errors.

●​ Parameters:

○​ statusCode (number): The HTTP status code for the error.

○​ message (string): The error message.

NotFoundError

export class NotFoundError extends AppError

Represents a "Resource Not Found" error (HTTP 404).

●​ Default message: "Not Found"

BadRequestError

export class BadRequestError extends AppError

Represents a "Bad Request" error (HTTP 400).

●​ Default message: "Bad Request"

DatabaseError

export class DatabaseError extends AppError

Represents a database operation error (HTTP 500).

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Default message: "DB error"

ValidationError

export class ValidationError extends AppError

Represents a user validation error (HTTP 422).

●​ Default message: "User validation error"

InternalServerError

export class InternalServerError extends AppError

Represents an internal server error (HTTP 500).

●​ Default message: Uses HTTP_TEXTS.INTERNAL_ERROR.

UnauthorizedError

export class UnauthorizedError extends AppError

Represents an unauthorized access error (HTTP 401).

●​ Default message: Uses HTTP_TEXTS.UNAUTHORIZED.

S3Error

export class S3Error extends AppError

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Represents an error related to S3 operations (HTTP 500).

●​ Default message: Uses HTTP_TEXTS.S3_ERROR.

ExceptionFunction

export class ExceptionFunction extends AppError

A flexible custom exception class for any HTTP status code.

●​ Parameters:

○​ message (string): The error message.

○​ httpStatus (number): The HTTP status code.

Custom Logger Utility
This module provides a secure, flexible logging utility for writing project- and API-key-specific
logs to disk, with strong protections against directory traversal and other file system attacks. It
leverages Winston for structured logging and supports dynamic log levels.

Features

●​ Safe Path Handling: Prevents directory traversal using path sanitization and
validation.

●​ Per-Project and Per-API-Key Logging: Logs are organized by project and API key.

●​ Automatic Directory and File Creation: Ensures log directories and files exist before
writing.

●​ Flexible Log Levels: Supports error, warn, info, and debug levels.

●​ Dual Logging: Writes to both file and console (or a global logger).

●​ Environment Awareness: Prints stack traces for new log files in non-production
environments.

If you have any questions, please reach out to tso-migration@contentstack.com

https://github.com/winstonjs/winston
mailto:tso-migration@contentstack.com

Exports

customLogger(projectId: string, apiKey: string, level: string, message:
string): Promise<void>

Logs a message to a file specific to the given project and API key, and also to the main
logger/console.

Parameters:

●​ projectId (string): The project identifier. Used as a directory name under logs/.

●​ apiKey (string): The API key. Used as the log file name within the project
directory.

●​ level (string): The log level (error, warn, info, debug). Defaults to info if
unrecognized.

●​ message (string): The message to log.

Behavior:

●​ Sanitizes projectId and apiKey to prevent path traversal.

●​ Ensures the log directory and file exist, creating them if necessary.

●​ Logs the message at the specified level to both the file and the main logger.

●​ In non-production environments, prints a stack trace when creating a new log file.

Internal Utilities

safeJoin(basePath: string, ...paths: string[]): string

Safely joins and resolves paths, ensuring the result is within basePath. Throws an error if a
directory traversal attempt is detected.

Parameters:

●​ basePath (string): The base directory.

●​ ...paths (string[]): Path segments to join.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Returns:​

A safe, absolute path within basePath.

fileExists(path: string): Promise<boolean>

Checks asynchronously if a file or directory exists.

Parameters:

●​ path (string): The path to check.

Returns:​

true if the file exists, false otherwise.

Example Usage

import customLogger from './custom-logger.utils';

await customLogger('myProject', 'myApiKey', 'info', 'This is a log
message.');

This will write the message to logs/myProject/myApiKey.log and also output it via the
main logger.

Security Notes

●​ All file and directory names are sanitized to prevent directory traversal.

●​ Paths are validated to ensure logs are only written within the intended directory
structure.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Dependencies

●​ winston

●​ fs

●​ path

●​ getSafePath from sanitize-path.utils.js

●​ A global logger instance from logger.js

Error Handling

●​ If a log file cannot be created or written, an error is printed to the console.

●​ If a directory traversal attempt is detected, an error is thrown and logged.

entries-field-creator.utils.ts
This utility module provides a set of helper functions for processing and transforming
Contentstack entry fields, including text, JSON RTE, dropdowns, references, assets, and more.
It is designed to support migration, transformation, and normalization of content data,
especially when working with Contentstack APIs and custom field mappings.

Dependencies
●​ lodash: Utility library for object and string manipulation.

●​ jsdom: Used to parse and manipulate HTML content in a Node.js environment.

●​ @contentstack/json-rte-serializer: Converts HTML to Contentstack JSON
RTE format.

●​ html-to-json-parser: Converts HTML to a JSON structure.

Helper Functions

startsWithNumber

If you have any questions, please reach out to tso-migration@contentstack.com

https://github.com/winstonjs/winston
https://nodejs.org/api/fs.html
https://nodejs.org/api/path.html
mailto:tso-migration@contentstack.com

function startsWithNumber(str: string): boolean

Checks if a string starts with a numeric character.

uidCorrector

const uidCorrector = ({ uid }: any): string

Normalizes a UID by:

●​ Prefixing with "a_" if it starts with a number.

●​ Replacing spaces and hyphens with underscores.

●​ Lowercasing the result.

attachJsonRte

const attachJsonRte = ({ content = "" }: any): any

Converts HTML content to Contentstack JSON RTE format using jsdom and
@contentstack/json-rte-serializer.

unflatten

export function unflatten(table: Table): any

Transforms a flat object with path-like keys (e.g., a.b[<span
class='inlineRef'>1]().c) into a nested object structure.

htmlConverter

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

const htmlConverter = async ({ content = "" }: any): Promise<any>

Converts HTML content to a JSON structure using html-to-json-parser.

getAssetsUid

const getAssetsUid = ({ url }: any): string | undefined

Extracts the asset UID from a Contentstack asset URL, handling various URL formats.

flatten

function flatten(data: any): any

Flattens a nested object into a single-level object with path-like keys.

findAssestInJsoRte

const findAssestInJsoRte = (jsonValue: any, allAssetJSON: any,
idCorrector: any): any

Scans a JSON RTE structure for embedded images, matches them to asset metadata, and
replaces them with Contentstack asset reference objects.

Main Export

entriesFieldCreator

export const entriesFieldCreator = async ({

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 field,

 content,

 idCorrector,

 allAssetJSON,

 contentTypes,

 entriesData,

 locale

}: any): Promise<any>

Description

A central function that processes a field value based on its Contentstack field type. It handles
various field types, including:

●​ Text fields (multi_line_text, single_line_text, text): Returns the content
as-is.

●​ JSON RTE (json): Converts HTML to JSON RTE and replaces embedded assets with
references.

●​ Dropdowns (dropdown): Maps the value to the correct option, handling defaults and
multiple selections.

●​ Numbers (number): Parses string numbers to integers.

●​ Files (file): Extracts asset references from JSON RTE.

●​ Links (link): Converts HTML links to a structured object with title and href.

●​ References (reference): Resolves references to other entries based on provided
mappings.

●​ Global Fields (global_field): Recursively processes nested field mappings.

●​ Booleans (boolean): Converts string "1" to true, otherwise false.

●​ Default: Returns the content as-is and logs missing field types.

Parameters

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ field: Field schema object describing the Contentstack field.

●​ content: The raw value/content for the field.

●​ idCorrector: Function to normalize or correct IDs.

●​ allAssetJSON: Object mapping asset UIDs to asset metadata.

●​ contentTypes: Array of content type schemas (for global fields).

●​ entriesData: Array of entry data (for resolving references).

●​ locale: Current locale (for localized references).

Returns

●​ The processed field value, ready for use in Contentstack or further transformation.

field-attacher.utils.ts
This utility provides a function to attach field mappings to content types for a given project and
then process those content types for migration or synchronization to a destination stack. It is
typically used in the context of content migration or stack synchronization workflows.

Imports

●​ ProjectModelLowdb: Handles reading and querying project data from a lowdb
database.

●​ ContentTypesMapperModelLowdb: Handles reading and querying content type
mappings from a lowdb database.

●​ FieldMapperModel: Handles reading and querying field mappings from a lowdb
database.

●​ contenTypeMaker: Utility function to process and create content types in the
destination stack.

fieldAttacher Function

Signature

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

export const fieldAttacher = async ({

 projectId,

 orgId,

 destinationStackId,

 region,

 user_id

}: any) => Promise<any[]>

Description

The fieldAttacher function orchestrates the process of:

1.​ Loading project, content type, and field mapping data from local databases.

2.​ For each content type associated with the project, it:

○​ Attaches the corresponding field mapping objects.

○​ Invokes the contenTypeMaker utility to process the content type for the
destination stack.

3.​ Returns an array of processed content type objects, each with their field mappings
attached.

Parameters

●​ projectId (string): The unique identifier of the project.

●​ orgId (string): The unique identifier of the organization.

●​ destinationStackId (string): The ID of the stack where content types will be
created or updated.

●​ region (string): The region identifier for the destination stack.

●​ user_id (string): The user ID performing the operation.

All parameters are passed as properties of a single object.

Returns

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Promise<any[]>: Resolves to an array of content type objects, each with their field
mappings attached and processed.

Workflow

1.​ Read Data: Loads the latest data from the project, content type mapper, and field
mapper lowdb models.

2.​ Find Project: Retrieves the project data matching the given projectId and orgId.

3.​ Iterate Content Types: For each content type ID in the project's content_mapper:

○​ Retrieves the content type mapping.

○​ For each field UID in the content type's fieldMapping, replaces the UID
with the full field mapping object.

○​ Calls contenTypeMaker to process the content type for the destination
stack.

○​ Adds the processed content type to the result array.

4.​ Return: Returns the array of processed content types.

get-project.utils.ts
Utility function for retrieving a project from the database by project ID and query, with robust
error handling and logging.

Overview
This module exports an asynchronous function that retrieves a project (or its index) from the
database using a provided project ID and query object. It validates the project ID, reads from
the database, and returns the matching project or its index. The function includes detailed
error handling and logging for invalid IDs, missing projects, and unexpected errors.

Function Signature
/**

 * Retrieves a project based on the provided project ID and query.

 * @param projectId - The ID of the project to retrieve.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 * @param query - The query to filter the projects.

 * @param srcFunc - The source function name (optional, for logging).

 * @param isIndex - If true, returns the index of the project instead of
the project object (default: false).

 * @returns The retrieved project object or its index.

 * @throws BadRequestError if the project ID is invalid or the project is
not found.

 * @throws ExceptionFunction for unexpected errors during retrieval.

 */

export default async (

 projectId: string,

 query: MigrationQueryType,

 srcFunc: string = "",

 isIndex: boolean = false

): Promise<any>

Parameters
projectId (string):​

●​ The unique identifier of the project to retrieve. Must be a valid UUID.

query (MigrationQueryType):​

●​ An object specifying the query criteria to filter projects.

srcFunc (string, optional):​

●​ The name of the source function calling this utility, used for logging context.
Defaults to an empty string.

isIndex (boolean, optional):​

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ If true, the function returns the index of the project in the collection; otherwise, it
returns the project object. Defaults to false.

Returns
●​ The project object matching the query, or its index if isIndex is true.

Throws
●​ BadRequestError:

○​ If the projectId is not a valid UUID.

○​ If the project is not found (either as an object or index).

●​ ExceptionFunction:

○​ For any unexpected errors during the retrieval process, with error details
and status code.

Internal Logic

Validation:​

1.​ Validates the projectId using the uuid package. Logs and throws a
BadRequestError if invalid.

Database Read:​

2.​ Reads the latest state from the ProjectModel.

3.​ Query Execution:

○​ If isIndex is true, finds the index of the project matching the query.

○​ Otherwise, finds the project object.

4.​ Result Handling:

○​ If not found (index < 0 or object is falsy), logs and throws a
BadRequestError.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

5.​ Error Handling:

○​ Catches any unexpected errors, logs them, and throws an
ExceptionFunction with details.

Dependencies
●​ ProjectModel: Lowdb model for projects.

●​ custom-errors.utils: Custom error classes.

●​ constants/index: HTTP status codes and texts.

●​ uuid: For UUID validation.

●​ logger: Logging utility.

●​ getLogMessage: Helper for formatted log messages.

https.utils.ts
A utility module for sending HTTP requests using Axios with a unified interface and
configurable options.

Overview

This module exports a single asynchronous function that wraps Axios to send HTTP requests.
It supports custom headers, data payloads, configurable timeouts, and automatically includes
data for specific HTTP methods. The function returns a simplified response object containing
headers, status, and data.

Usage

import httpRequest from "./utils/https.utils";

const response = await httpRequest({

 url: "https://api.example.com/resource",

 method: "POST",

 headers: { "Authorization": "Bearer token" },

 data: { key: "value" },

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

 timeout: 5000,

});

console.log(response.status); // e.g., 200

console.log(response.data); // Response body

Type Definitions

httpType

type httpType = {

 url: string; // The request URL

 method: string; // HTTP method (e.g., 'GET', 'POST', etc.)

 headers?: any; // Optional HTTP headers

 data?: any; // Optional request payload (for methods like
POST, PUT)

 timeout?: number; // Optional request timeout in milliseconds

};

Function

Default Export

async function httpRequest(obj: httpType): Promise<{

 headers: any;

 status: number;

 data: any;

}>

Parameters:

●​ obj (httpType): The HTTP request configuration object.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

○​ url: The endpoint to send the request to.

○​ method: The HTTP method to use.

○​ headers (optional): Custom headers to include in the request.

○​ data (optional): The request body, included only for methods specified in
METHODS_TO_INCLUDE_DATA_IN_AXIOS.

○​ timeout (optional): Request timeout in milliseconds. Defaults to
AXIOS_TIMEOUT if not provided.

Returns:

A Promise that resolves to an object containing:

●​ headers: The response headers.

●​ status: The HTTP status code.

●​ data: The response body.

Implementation Notes

●​ The function uses the axios library for HTTP requests.

●​ The timeout defaults to AXIOS_TIMEOUT if not specified.

●​ The data property is only included for HTTP methods listed in
METHODS_TO_INCLUDE_DATA_IN_AXIOS.

●​ The response is normalized to always return headers, status, and data.

api/src/utils/index.ts

Utils Module (api/src/utils/index.ts)
This module provides a set of utility functions for error handling, value checking, logging, file
system operations, and API requests. These utilities are designed to be reusable across the
application.

throwError

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

export const throwError = (message: string, statusCode: number) => { ... }

Throws an error with a custom message and HTTP status code.

Parameters:

●​ message (string): The error message.

●​ statusCode (number): The HTTP status code to associate with the error.

Throws:​

An Error object with the specified message and a statusCode property.

isEmpty

export const isEmpty = (val: unknown) => { ... }

Checks if a value is empty.

Parameters:

●​ val (unknown): The value to check.

Returns:​

true if the value is undefined, null, an empty object, or an empty/whitespace-only string;
otherwise, false.

safePromise

export const safePromise = (promise: Promise<any>): Promise<any> => { ...
}

Wraps a promise to always resolve with a tuple [error, result].

Parameters:

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ promise (Promise<any>): The promise to wrap.

Returns:​

A promise that resolves to [null, result] on success or [error] on failure.

getLogMessage

export const getLogMessage = (

 methodName: string,

 message: string,

 user = {},

 error?: any

) => { ... }

Generates a structured log message object.

Parameters:

●​ methodName (string): The name of the method generating the log.

●​ message (string): The log message.

●​ user (object, optional): The user context (default: {}).

●​ error (any, optional): The error object, if any.

Returns:​

An object containing the log details.

copyDirectory

export async function copyDirectory(srcDir: string, destDir: string):
Promise<void> { ... }

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Recursively copies a directory from a source to a destination.

Parameters:

●​ srcDir (string): Source directory path.

●​ destDir (string): Destination directory path.

Returns:​

Promise<void>

Notes:​

Logs success or error messages to the console.

createDirectoryAndFile

export async function createDirectoryAndFile(filePath: string, sourceFile:
string) { ... }

Creates a directory (if it doesn't exist) and a file at the specified path, copying content from a
source file.

Parameters:

●​ filePath (string): The path where the file should be created.

●​ sourceFile (string): The path to the source file whose contents will be copied.

Returns:​

Promise<void>

Notes:​

Logs whether the file was created or already exists, and logs errors if any occur.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

getAllLocales

export async function getAllLocales () { ... }

Fetches all locales from the configured API endpoint.

Returns:​

A promise that resolves to a tuple [error, locales], where locales is the list of locales
returned by the API.

Notes:​

Uses the safePromise utility for error handling.

Dependencies
●​ fs-extra: For file system operations.

●​ path: For path manipulations.

●​ mkdirp: For recursive directory creation.

●​ ../config/index.js: Application configuration.

●​ ../utils/https.utils.js: HTTP request utility.

src/utils/jwt.utils.ts
This utility module provides a function to generate JSON Web Tokens (JWT) for authentication
and authorization purposes in your application.

Dependencies

●​ jsonwebtoken: Used for creating and signing JWT tokens.

●​ AppTokenPayload: Type definition for the payload structure, imported from your
application's models.

If you have any questions, please reach out to tso-migration@contentstack.com

https://www.npmjs.com/package/fs-extra
https://nodejs.org/api/path.html
https://www.npmjs.com/package/mkdirp
https://web.dashworks.ai/config/index.js
https://web.dashworks.ai/utils/https.utils.js
mailto:tso-migration@contentstack.com

●​ config: Application configuration, which should provide the secret key and token
expiration settings.

Function: generateToken

/**

 * Generates a JWT token with the provided payload.

 *

 * @param payload - The payload to be included in the token. Must conform
to the AppTokenPayload type.

 * @returns The generated JWT token as a string.

 *

 * @example

 * const payload = { userId: "123", role: "admin" };

 * const token = generateToken(payload);

 */

export const generateToken = (payload: AppTokenPayload): string => {

 return jwt.sign(payload, config.APP_TOKEN_KEY, {

 expiresIn: config.APP_TOKEN_EXP,

 });

};

Parameters

●​ payload (AppTokenPayload):​
The data to be embedded in the JWT. This typically includes user identification and
any claims required for your application's authentication logic.

Returns

●​ string:​
The signed JWT token as a string.

Usage Example

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

import { generateToken } from "./utils/jwt.utils";

import { AppTokenPayload } from "./models/types";

const payload: AppTokenPayload = {

 userId: "abc123",

 role: "user",

};

const token = generateToken(payload);

// Use the token for authentication headers, etc.

Configuration Requirements

●​ config.APP_TOKEN_KEY:​
A secret string used to sign the JWT. This should be kept secure and not exposed
publicly.

●​ config.APP_TOKEN_EXP:​
A string or number indicating the token's expiration time (e.g., "1h", "7d", 3600).

Notes

●​ The function uses the jsonwebtoken library's sign method to create the token.

●​ The token will expire based on the value set in config.APP_TOKEN_EXP.

●​ Ensure that the payload does not contain sensitive information unless it is encrypted
or otherwise protected, as JWT payloads are only base64-encoded and not
encrypted.

logger.ts
This module provides a pre-configured Winston logger instance for consistent and structured
logging throughout the application.

Overview

The logger is set up to:

If you have any questions, please reach out to tso-migration@contentstack.com

https://github.com/winstonjs/winston
mailto:tso-migration@contentstack.com

●​ Log messages at the info level and above.

●​ Output logs in JSON format with timestamps.

●​ Write logs to both the console and a file named combine.log.

Implementation

import { createLogger, format, transports } from "winston";

/**

 * The logger instance used for logging messages.

 *

 * Configuration:

 * - Level: "info" (logs at info, warn, error, etc.)

 * - Format: JSON with timestamp

 * - Transports:

 * - Console: Outputs all logs to the console.

 * - File: Writes all logs to 'combine.log'.

 */

const logger = createLogger({

 level: "info",

 format: format.combine(format.timestamp(), format.json()),

 transports: [

 // Write all logs with importance level of `info` or less to
`combine.log`

 new transports.File({ filename: "combine.log" }),

 new transports.Console({}),

],

});

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

export default logger;

Usage

Import and use the logger in any part of your application:

import logger from "api/src/utils/logger";

logger.info("Application started");

logger.error("An error occurred", { error });

Configuration Details

●​ Level:​
The logger captures all messages at the info level and above (warn, error, etc.).

●​ Format:​
Logs are formatted as JSON and include a timestamp for each entry.

●​ Transports:

○​ File: All logs are written to combine.log in the root directory.

○​ Console: All logs are also output to the console for real-time visibility.

api/src/utils/lowdb-lodash.utils.ts

Overview

This file defines a utility class, LowWithLodash, which extends the LowDB Low class and
integrates Lodash chainable methods for convenient data manipulation. The class is generic and
can be used with any data type supported by LowDB.

Imports

import lodash from "lodash";

import { Low } from "lowdb";

●​ lodash: Provides utility functions for common programming tasks, including chainable
data manipulation.

If you have any questions, please reach out to tso-migration@contentstack.com

https://github.com/typicode/lowdb
https://lodash.com/
mailto:tso-migration@contentstack.com

●​ Low: The base class from LowDB, a small local JSON database for Node, Electron, and
browser.

Class: LowWithLodash<T>

Description

LowWithLodash is a generic class that extends the LowDB Low class, adding a Lodash-powered
chain property. This property allows you to perform complex, chainable queries and
transformations on the database's data using Lodash's API.

Type Parameters

●​ T: The type of the data stored in the LowDB instance.

Properties

●​ chain: lodash.ExpChain<this["data"]>

○​ A Lodash chain object initialized with the database's data.

○​ Enables chainable Lodash operations directly on the data.

Example Usage​

import LowWithLodash from "./utils/lowdb-lodash.utils";

// Assume MyDataType is the shape of your database

const db = new LowWithLodash<MyDataType>(adapter);

// Access Lodash chain methods on the data

const result = db.chain

 .filter(item => item.active)

 .map(item => item.name)

 .value();

Implementation

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

export default class LowWithLodash<T> extends Low<T> {

 chain: lodash.ExpChain<this["data"]> = lodash.chain(this).get("data");

}

●​ The chain property is initialized to a Lodash chain starting from the data property of
the LowDB instance.

●​ This allows you to use Lodash's chainable methods (e.g., filter, map, find, etc.) on
your database data.

Notes

●​ The class assumes that the data property is always available and up-to-date. If you
modify the data directly, you may need to re-initialize the chain to reflect changes.

●​ This utility is especially useful for projects that require both persistent storage (via
LowDB) and advanced data querying/manipulation (via Lodash).

Exports

●​ Default: LowWithLodash<T>

market-app.utils.ts
Utility functions for interacting with the Contentstack Marketplace API, including fetching all apps
for an organization and retrieving app manifest/configuration details.

Dependencies

●​ @contentstack/marketplace-sdk: SDK for interacting with Contentstack
Marketplace.

●​ DEVURLS: A mapping of region codes to API host URLs, imported from
../constants/index.js.

Functions

1. getAllApps

If you have any questions, please reach out to tso-migration@contentstack.com

https://www.npmjs.com/package/@contentstack/marketplace-sdk
mailto:tso-migration@contentstack.com

Fetches all marketplace apps available to a given organization.

Signature

export const getAllApps = async ({ organizationUid, authtoken, region }:
any) => { ... }

Parameters

●​ organizationUid (string): The unique identifier for the organization.

●​ authtoken (string): The authentication token for API access.

●​ region (string): The region code (e.g., 'NA', 'EU'). Used to select the appropriate
API host.

Returns

●​ Promise<Array<any> | undefined>: Resolves to an array of app objects
(data.items) if successful, or undefined if an error occurs.

Example Usage

const apps = await getAllApps({

 organizationUid: 'org_uid',

 authtoken: 'your_auth_token',

 region: 'NA'

});

Notes

●​ If an error occurs, it is logged to the console and the function returns undefined.

2. getAppManifestAndAppConfig

Fetches the manifest and configuration for a specific app in the marketplace.

Signature

export const getAppManifestAndAppConfig = async ({ organizationUid,
authtoken, region, manifestUid }: any) => { ... }

Parameters

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ organizationUid (string): The unique identifier for the organization.

●​ authtoken (string): The authentication token for API access.

●​ region (string): The region code (e.g., 'NA', 'EU'). Used to select the appropriate
API host.

●​ manifestUid (string): The unique identifier for the app manifest.

Returns

●​ Promise<any | undefined>: Resolves to the app manifest and configuration object
if successful, or undefined if an error occurs.

Example Usage

const appDetails = await getAppManifestAndAppConfig({

 organizationUid: 'org_uid',

 authtoken: 'your_auth_token',

 region: 'NA',

 manifestUid: 'manifest_uid'

});

Notes

●​ If an error occurs, it is logged to the console and the function returns undefined.

Error Handling
Both functions log errors to the console using console.info and return undefined if an error is
encountered.

Host Selection
The API host is determined by the region parameter using the DEVURLS mapping. If the region is
not found, it defaults to the 'NA' (North America) host.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Example
import { getAllApps, getAppManifestAndAppConfig } from
'./market-app.utils';

(async () => {

 const apps = await getAllApps({ organizationUid: 'org_uid', authtoken:
'token', region: 'NA' });

 console.log(apps);

 const appConfig = await getAppManifestAndAppConfig({

 organizationUid: 'org_uid',

 authtoken: 'token',

 region: 'NA',

 manifestUid: 'manifest_uid'

 });

 console.log(appConfig);

})();

pagination.utils.ts (src/utils/pagination.utils.ts)

Overview

This utility provides a function to fetch all paginated data from an API endpoint that supports
limit and skip query parameters. It repeatedly requests data in batches until all items are
retrieved, handling errors and response validation along the way.

Function: fetchAllPaginatedData

Fetches all items from a paginated API endpoint by making repeated requests until all data is
collected.

Signature

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

const fetchAllPaginatedData = async (

 baseUrl: string,

 headers: Record<string, string>,

 limit = 100,

 srcFunc = '',

 responseKey = 'items'

): Promise<any[]>

Parameters

baseUrl (string):​

●​ The base URL of the API endpoint (e.g., https://api.example.com/resources).

headers (Record<string, string>):​

●​ An object containing HTTP headers to include in each request (e.g., authentication
tokens).

limit (number, optional, default: 100):​

●​ The number of items to fetch per request/page.

srcFunc (string, optional, default: ''):​

●​ The name of the source function for logging or error reporting purposes.

responseKey (string, optional, default: 'items'):​

●​ The key in the API response object that contains the array of items to collect.

Returns

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Promise<any[]>:​
A promise that resolves to an array containing all items fetched from the paginated
endpoint.

Usage Example

import fetchAllPaginatedData from './pagination.utils';

const allUsers = await fetchAllPaginatedData(

 'https://api.example.com/users',

 { Authorization: 'Bearer <token>' },

 50,

 'getAllUsers',

 'users'

);

console.log(allUsers.length); // Total number of users fetched

How It Works

Initialization:​

1.​ Starts with an empty array and a skip counter set to 0.

2.​ Fetching Loop:

○​ Makes a GET request to the endpoint with limit and skip as query
parameters.

○​ Uses the safePromise utility to handle promise resolution and errors.

○​ Extracts the array of items from the response using responseKey.

○​ Appends the fetched items to the result array.

○​ If the number of items fetched is less than limit, the loop ends (all data
fetched).

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

○​ Otherwise, increments skip by limit and repeats.

3.​ Error Handling:

○​ Throws an error if the request fails or if the response does not contain an
iterable array at responseKey.

Error Handling

●​ Throws an error if:

○​ The HTTP request fails (includes error details and the source function
name).

○​ The response does not contain an array at the specified responseKey.

Dependencies

●​ safePromise: Utility for handling async/await errors.

●​ https: HTTP request utility (must support the same interface as Axios or similar).

Notes

●​ The endpoint must support limit and skip query parameters for pagination.

●​ The function is generic and can be used for any paginated resource as long as the
response structure is consistent.

sanitize-path.utils.ts
Utility functions for sanitizing filenames and securely resolving file paths.

Functions
sanitizeFilename(filename: string): string

Sanitizes a filename by removing unsafe characters.​

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Only allows alphanumeric characters, underscores (_), dots (.), hyphens (-), and spaces.

Parameters:

●​ filename — The input filename to sanitize.

Returns:​

A safe, sanitized filename string.

Example:

sanitizeFilename('my*unsafe:file.txt'); // 'myunsafefile.txt'

getSafePath(inputPath: string, baseDir?: string): string

Resolves and validates a safe, absolute file path.​

Supports absolute and relative paths, as well as path.join() and path.resolve() usage.​

Ensures the filename is sanitized and, if a base directory is provided, the resulting path does not
escape it.

Parameters:

●​ inputPath — The file path (absolute or relative) to resolve and sanitize.

●​ baseDir (optional) — The base directory for resolving relative paths and enforcing
directory containment.

Returns:​

A safe, absolute file path as a string.​

If the resolved path attempts to escape the base directory, returns a default path (default.log in
the base directory).

Example:

getSafePath('../etc/passwd', '/var/log'); // '/var/log/default.log'

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

getSafePath('user data.log', '/var/log'); // '/var/log/user data.log'

getSafePath('/tmp/unsafe*file.txt'); // '/tmp/unsafefile.txt'

test-folder-creator.utils.ts
Utility functions for managing, sanitizing, and organizing test data folders and files, primarily for
migration or testing scenarios.​

Handles content types, assets, global fields, and directory cleanup.

Exports
testFolderCreator({ destinationStackId })

Main function to process and organize test data for a given stack ID.

Parameters:

●​ destinationStackId — The stack identifier (string or object with a string property).

Behavior:

●​ Reads all entry files from the stack's entries directory.

●​ Normalizes and aggregates entry data by content type and locale.

●​ Processes only a subset of entries per content type for efficiency.

●​ Sorts and cleans up asset files.

●​ Deletes the original entries directory.

●​ Writes sanitized and organized entry files back to disk.

Example:

await testFolderCreator({ destinationStackId: 'my-stack-id' });

Internal Utilities

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

writeOneFile(indexPath, fileMeta)

Writes a single file as JSON to the specified path.

writeFiles(entryPath, fileMeta, entryLocale, locale)

Ensures the target directory exists, then writes both the master file and locale-specific entry file.

startsWithNumber(str)

Checks if a string starts with a number.

uidCorrector({ uid })

Sanitizes UIDs by replacing spaces and hyphens with underscores, converting to lowercase, and
prefixing with a_ if the UID starts with a number.

saveContent(ct, contentSave)

Saves a content type object as a JSON file and appends it to a schema file in the specified
directory.

cleanDirectory(folderPath, foldersToKeep)

Deletes all subfolders in a directory except those whose names are in the foldersToKeep list.

deleteFolderAsync(folderPath)

Recursively deletes a folder and its contents.

lookForReference(field, finalData)

Recursively processes schema fields to update references based on available content types.

sortAssets(baseDir)

Sorts asset metadata, cleans up asset files, and updates the asset schema file.

writeGlobalField(schema, globalSave, filePath)

Writes global field schema data to the specified file path, ensuring the directory exists.

sortGlobalField(baseDir, finalData)

Processes and updates global field references based on available content types.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

watch.utils.ts
Utility for watching a log file and merging its updates into a destination file in real time.

Exports
watchLogs(sourceFile: string, destinationFile: string): Promise<void>

Watches a source log file for changes and appends new content to a destination log file whenever
the source is updated.

Parameters:

●​ sourceFile — Path to the log file to watch.

●​ destinationFile — Path to the log file where updates will be merged.

Behavior:

●​ Uses the chokidar library to efficiently watch for changes in the source file.

●​ On every change, reads the entire source file and appends its content (with a newline) to
the destination file.

●​ Logs actions and errors to the console for traceability.

Example:

import watchLogs from './watch.utils';

await watchLogs('logs/source.log', 'logs/merged.log');

Internal Functions
mergeLogs(destinationFile: string, sourceFile: string): Promise<void>

Reads the content of the source file and appends it (with a newline) to the destination file.​

Handles errors gracefully and logs success or failure.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

affix-confirmation.validator.ts
Validator for the affix_confirmation field in API requests, using express-validator.

Overview
This module exports a validation schema that ensures the affix_confirmation field is present
in the request body and is a boolean value.

Validation Rules
●​ Field: affix_confirmation

○​ Location: body

○​ Type: Must be a boolean (true or false)

○​ Error Message: Uses the template from
VALIDATION_ERRORS.BOOLEAN_REQUIRED, replacing $ with
affix_confirmation

○​ Bail: Stops running further validations if this one fails

Usage Example
import affixConfirmationValidator from './affix-confirmation.validator';

app.post('/your-endpoint', affixConfirmationValidator, (req, res) => {

 // Your handler logic here

});

If the affix_confirmation field is missing or not a boolean, the request will fail validation and
return an appropriate error message.

If you have any questions, please reach out to tso-migration@contentstack.com

https://express-validator.github.io/docs/
mailto:tso-migration@contentstack.com

Returned Value
●​ Returns an array of validation middlewares compatible with Express.js routes.

auth.validator.ts
Validator for authentication request bodies using express-validator.

Overview

This module exports a validation schema to ensure that authentication requests contain valid
email, password, and region fields, with an optional tfa_token field. Each field is validated for
type, format, and value constraints.

Validation Rules
email

●​ Location: body

●​ Type: Must be a string

○​ Error Message: Uses VALIDATION_ERRORS.STRING_REQUIRED with
"Email"

●​ Format: Must be a valid email address

○​ Error Message: Uses VALIDATION_ERRORS.INVALID_EMAIL

●​ Trim: Removes leading/trailing whitespace

●​ Length: Must be between 3 and 350 characters

○​ Error Message: Uses VALIDATION_ERRORS.EMAIL_LIMIT

password

●​ Location: body

If you have any questions, please reach out to tso-migration@contentstack.com

https://express-validator.github.io/docs/
mailto:tso-migration@contentstack.com

●​ Type: Must be a string

○​ Error Message: Uses VALIDATION_ERRORS.STRING_REQUIRED with
"Password"

●​ Trim: Removes leading/trailing whitespace

region

●​ Location: body

●​ Type: Must be a string

○​ Error Message: Uses VALIDATION_ERRORS.STRING_REQUIRED with
"Region"

●​ Trim: Removes leading/trailing whitespace

●​ Allowed Values: Must be one of the values in CS_REGIONS

○​ Error Message: Uses VALIDATION_ERRORS.INVALID_REGION

tfa_token (optional)

●​ Location: body

●​ Type: Must be a string if provided

○​ Error Message: Uses VALIDATION_ERRORS.STRING_REQUIRED with "2FA
Token"

●​ Trim: Not applied

Usage Example
import authValidator from './auth.validator';

app.post('/auth/login', authValidator, (req, res) => {

 // Your authentication logic here

});

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

If any required field is missing or invalid, the request will fail validation and return an appropriate
error message.

Returned Value

●​ Returns an array of validation middlewares compatible with Express.js routes.

cms.validator.ts
Validator for the legacy_cms field in API requests, using express-validator.

Overview
This module exports a validation schema that ensures the legacy_cms field in the request body is
a non-empty string with a maximum length of 200 characters.

Validation Rules
●​ Field: legacy_cms

○​ Location: body

○​ Type: Must be a string​
Error Message: Uses VALIDATION_ERRORS.STRING_REQUIRED with
"legacy_cms"

○​ Trim: Removes leading and trailing whitespace before validation

○​ Length: Must be between 1 and 200 characters​
Error Message: Uses VALIDATION_ERRORS.LENGTH_LIMIT with
"legacy_cms"

Usage Example
import cmsValidator from './cms.validator';

If you have any questions, please reach out to tso-migration@contentstack.com

https://express-validator.github.io/docs/
mailto:tso-migration@contentstack.com

app.post('/your-endpoint', cmsValidator, (req, res) => {

 // Your handler logic here

});

If the legacy_cms field is missing, not a string, or does not meet the length requirements, the
request will fail validation and return an appropriate error message.

Returned Value
●​ Returns an array of validation middlewares compatible with Express.js routes.

destination-stack.validator.ts
Validator for the stack_api_key field in API requests, using express-validator.

Overview

This module exports a validation schema that ensures the stack_api_key field in the request
body is a non-empty string with a maximum length of 100 characters.

Validation Rules

●​ Field: stack_api_key

○​ Location: body

○​ Type: Must be a string​
Error Message: Uses VALIDATION_ERRORS.STRING_REQUIRED with
"stack_api_key"

○​ Trim: Removes leading and trailing whitespace before validation

If you have any questions, please reach out to tso-migration@contentstack.com

https://express-validator.github.io/docs/
mailto:tso-migration@contentstack.com

○​ Length: Must be between 1 and 100 characters​
Error Message: Uses VALIDATION_ERRORS.LENGTH_LIMIT with
"stack_api_key"

Usage Example
import destinationStackValidator from './destination-stack.validator';

app.post('/your-endpoint', destinationStackValidator, (req, res) => {

 // Your handler logic here

});

If the stack_api_key field is missing, not a string, or does not meet the length requirements, the
request will fail validation and return an appropriate error message.

Returned Value

●​ Returns an array of validation middlewares compatible with Express.js routes.

file-format.validator.ts
Validator for the file_format field in API requests, using express-validator.

Overview
This module exports a validation schema that ensures the file_format field in the request body
is a non-empty string with a maximum length of 200 characters.

Validation Rules

If you have any questions, please reach out to tso-migration@contentstack.com

https://express-validator.github.io/docs/
mailto:tso-migration@contentstack.com

●​ Field: file_format

○​ Location: body

○​ Type: Must be a string​
Error Message: Uses VALIDATION_ERRORS.STRING_REQUIRED with
"file_format"

○​ Trim: Removes leading and trailing whitespace before validation

○​ Length: Must be between 1 and 200 characters​
Error Message: Uses VALIDATION_ERRORS.LENGTH_LIMIT with
"file_format"

Usage Example
import fileFormatValidator from './file-format.validator';

app.post('/your-endpoint', fileFormatValidator, (req, res) => {

 // Your handler logic here

});

If the file_format field is missing, not a string, or does not meet the length requirements, the
request will fail validation and return an appropriate error message.

Returned Value
●​ Returns an array of validation middlewares compatible with Express.js routes.

fileformat-confirmation.validator.ts
Validator for the fileformat_confirmation field in API requests, using express-validator.

Overview

If you have any questions, please reach out to tso-migration@contentstack.com

https://express-validator.github.io/docs/
mailto:tso-migration@contentstack.com

This module exports a validation schema that ensures the fileformat_confirmation field in
the request body is a boolean value.

Validation Rules
●​ Field: fileformat_confirmation

○​ Location: body

○​ Type: Must be a boolean​
Error Message: Uses VALIDATION_ERRORS.BOOLEAN_REQUIRED with
"fileformat_confirmation"

Usage Example
import fileformatConfirmationValidator from
'./fileformat-confirmation.validator';

app.post('/your-endpoint', fileformatConfirmationValidator, (req, res) =>
{

 // Your handler logic here

});

If the fileformat_confirmation field is missing or not a boolean, the request will fail
validation and return an appropriate error message.

Returned Value
●​ Returns an array of validation middlewares compatible with Express.js routes.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

index.ts
Centralized validator middleware for API request validation, using express-validator and custom
error handling.

Overview

This module exports a function that returns an Express middleware for validating incoming
requests based on the specified route. It dynamically selects the appropriate validator and throws a
ValidationError if validation fails.

Supported Validators

The following validators are available and mapped by route name:

●​ auth: Validates authentication fields

●​ project: Validates project-related fields

●​ cms: Validates CMS-related fields

●​ file_format: Validates file format fields

●​ destination_stack: Validates destination stack fields

●​ affix: Validates affix fields

●​ affix_confirmation_validator: Validates affix confirmation fields

●​ fileformat_confirmation_validator: Validates file format confirmation fields

●​ stack: Validates stack fields

Usage Example
import validator from './validators';

If you have any questions, please reach out to tso-migration@contentstack.com

https://express-validator.github.io/docs/
mailto:tso-migration@contentstack.com

app.post('/api/some-route', validator('file_format'), (req, res) => {

 // Your handler logic here

});

Pass the route name as a string to select the corresponding validator.

How It Works

1.​ The middleware receives a route name and selects the corresponding validator from the
internal mapping.

2.​ The selected validator is executed against the incoming request.

3.​ If validation errors are found, a ValidationError is thrown with the first error
message.

4.​ If validation passes, the request proceeds to the next middleware or handler.

Error Handling

If validation fails, a ValidationError is thrown with the first error message from the validation
result. This should be caught by your global error handler to return an appropriate response to the
client.

project.validator.ts
Validator for the project data in API requests, using express-validator.

Overview

This module exports a validation schema that ensures the name and description fields in the
request body are non-empty strings with specific maximum lengths.

If you have any questions, please reach out to tso-migration@contentstack.com

https://express-validator.github.io/docs/
mailto:tso-migration@contentstack.com

Validation Rules

●​ Field: name

○​ Location: body

○​ Type: Must be a string​
Error Message: Uses VALIDATION_ERRORS.STRING_REQUIRED with
"Name"

○​ Trim: Removes leading and trailing whitespace before validation

○​ Length: Must be between 1 and 200 characters​
Error Message: Uses VALIDATION_ERRORS.LENGTH_LIMIT with "Name"

●​ Field: description

○​ Location: body

○​ Type: Must be a string​
Error Message: Uses VALIDATION_ERRORS.STRING_REQUIRED with
"Description"

○​ Trim: Removes leading and trailing whitespace before validation

○​ Length: Must be between 1 and 255 characters​
Error Message: Uses VALIDATION_ERRORS.LENGTH_LIMIT with
"Description"

Usage Example
import projectValidator from './project.validator';

app.post('/api/projects', projectValidator, (req, res) => {

 // Your handler logic here

});

If either the name or description field is missing, not a string, or does not meet the length
requirements, the request will fail validation and return an appropriate error message.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Returned Value

●​ Returns an array of validation middlewares compatible with Express.js routes.

stack.validator.ts
Validator for the stack data in API requests, using express-validator.

Overview
This module exports a validation schema that ensures the name and description fields in the
request body meet specific type and length requirements.

Validation Rules
●​ Field: name

○​ Location: body

○​ Type: Must be a string​
Error Message: Uses VALIDATION_ERRORS.STRING_REQUIRED with
"Name"

○​ Trim: Removes leading and trailing whitespace before validation

○​ Length: Must be between 1 and 255 characters​
Error Message: Uses VALIDATION_ERRORS.LENGTH_LIMIT with "Name"

●​ Field: description

○​ Location: body

○​ Type: Must be a string​
Error Message: Uses VALIDATION_ERRORS.STRING_REQUIRED with
"Description"

○​ Trim: Removes leading and trailing whitespace before validation

If you have any questions, please reach out to tso-migration@contentstack.com

https://express-validator.github.io/docs/
mailto:tso-migration@contentstack.com

○​ Length: Must be between 0 and 512 characters​
Error Message: Uses VALIDATION_ERRORS.LENGTH_LIMIT with
"Description"

Usage Example
import stackValidator from './stack.validator';

app.post('/api/stacks', stackValidator, (req, res) => {

 // Your handler logic here

});

If the name or description field is missing, not a string, or does not meet the length
requirements, the request will fail validation and return an appropriate error message.

Returned Value
●​ Returns an array of validation middlewares compatible with Express.js routes.

database.ts
Handles the initialization and connection logic for the application's database directory.

Overview
This module provides an asynchronous function to ensure the required database folder exists
before the application starts interacting with the database. It uses Node.js's fs module for file
system operations and a custom logger for logging status and errors.

Function: connectToDatabase

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

Ensures the ./database directory exists, creating it if necessary. Logs the connection status or
any errors encountered.

Signature

const connectToDatabase: () => Promise<void>

Description

●​ Checks if the ./database directory exists.

●​ If it does not exist, creates the directory.

●​ Logs a success message upon successful setup.

●​ If an error occurs during this process, logs the error and terminates the process.

Example Usage

import connectToDatabase from './database';

await connectToDatabase();

// Proceed with application startup

Error Handling
If an error occurs while checking for or creating the database directory, the function logs the error
using the application's logger and exits the process with a non-zero status code.

server.ts
Main entry point for the API server. Sets up the Express application, middleware, routes, database
connection, and real-time log streaming via Socket.IO.

Overview

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

This module initializes and configures the Express server, applies security and parsing middleware,
sets up API routes, handles errors, and manages real-time log file updates to connected clients
using Socket.IO. It also provides a utility to dynamically change the log file being watched.

Key Features
●​ Security: Uses helmet for HTTP header security and cors for cross-origin requests.

●​ Request Parsing: Supports JSON and URL-encoded bodies up to 10MB.

●​ Custom Middleware: Includes logging, request header processing, and error handling.

●​ API Routing: Organizes endpoints for authentication, users, organizations, projects,
content mapping, and migrations.

●​ Database Initialization: Ensures the database is ready before serving requests.

●​ Real-Time Log Streaming: Watches a log file and streams updates to clients via
Socket.IO.

●​ Dynamic Log File Watching: Allows changing the watched log file at runtime.

Middleware Stack
●​ helmet: Sets security-related HTTP headers (with crossOriginOpenerPolicy

disabled).

●​ cors: Enables CORS for all origins.

●​ express.urlencoded and express.json: Parses incoming request bodies.

●​ loggerMiddleware: Logs incoming requests.

●​ requestHeadersMiddleware: Processes custom request headers.

●​ authenticateUser: Protects routes that require authentication.

●​ unmatchedRoutesMiddleware: Handles 404s for undefined routes.

●​ errorMiddleware: Handles errors globally.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

API Routes
●​ /v2/auth: Authentication endpoints.

●​ /v2/user: User endpoints (requires authentication).

●​ /v2/org/:orgId: Organization endpoints (requires authentication).

●​ /v2/org/:orgId/project: Project endpoints within an organization (requires
authentication).

●​ /v2/mapper: Content mapper endpoints (requires authentication).

●​ /v2/migration: Migration endpoints (requires authentication).

Real-Time Log Streaming
Watches the log file specified by config.LOG_FILE_PATH using chokidar. When the log file
changes:

●​ Reads new data from the file since the last update.

●​ Emits log updates in 1MB chunks to all connected Socket.IO clients via the logUpdate
event.

Example: Listening for Log Updates on the Client

const socket = io('http://localhost:PORT');

socket.on('logUpdate', (chunk) => {

 // Handle new log data

});

Dynamic Log File Path
The exported setLogFilePath(newPath: string) function allows changing the watched log
file at runtime. It:

●​ Validates and resolves the new path.

●​ Stops watching the old log file.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

●​ Starts watching the new log file.

●​ Handles errors and can revert to the previous path if needed.

Server Startup
On startup:

1.​ Connects to the database using connectToDatabase.

2.​ Starts the Express server on the port defined in config.PORT.

3.​ Initializes Socket.IO for real-time communication.

If any error occurs during startup, it is logged and the process exits.

If you have any questions, please reach out to tso-migration@contentstack.com

mailto:tso-migration@contentstack.com

	Backend API Reference
	Overview
	Key Sections
	Regions and URLs
	CMS and Modules
	HTTP Codes and Messages
	Validation and Error Handling
	Project and Content Type Status
	Locale and Field Mapping
	Miscellaneous
	Migration Data Configuration

	Usage
	Maintenance
	Example
	Overview
	Exported Controller Methods
	1. login
	2. RequestSms

	Example Usage
	Overview
	Exported Controller Methods
	1. createTestStack
	2. deleteTestStack
	3. startTestMigration
	4. startMigration
	5. getLogs
	6. saveLocales
	7. saveMappedLocales

	Example Usage
	Overview
	Exported Controller Methods
	1. getAllStacks
	2. createStack
	3. getLocales
	4. getStackStatus
	5. getStackLocale
	6. getOrgDetails

	Example Usage
	Overview
	Exported Controller Methods
	1. putTestData
	2. getContentTypes
	3. getFieldMapping
	4. getExistingContentTypes
	5. getExistingGlobalFields
	6. putContentTypeFields
	7. resetContentType
	8. removeContentMapper
	9. getSingleContentTypes
	10. getSingleGlobalField
	11. updateContentMapper

	Example Usage
	Overview
	Exported Controller Methods
	1. getAllProjects
	2. getProject
	3. createProject
	4. updateProject
	5. updateLegacyCMS
	6. updateAffix
	7. affixConfirmation
	8. updateFileFormat
	9. fileformatConfirmation
	10. updateDestinationStack
	11. updateCurrentStep
	12. deleteProject
	13. revertProject
	14. updateStackDetails
	15. updateMigrationExecution
	16. getMigratedStacks

	Example Usage
	Overview
	Exported Controller Methods
	1. getUserProfile

	Example Usage
	Exported Middleware
	authenticateUser

	Notes
	Best Practices

	src/middlewares/auth.uploadService.middleware.ts
	Overview
	Exported Middleware
	authenticateUploadService

	Example Usage
	Notes
	Best Practices
	Overview
	Interface: AuthenticationDocument
	Default Data
	Database Instance
	Notes

	Imports
	Interfaces
	ContentTypesMapper
	ContentTypeMapperDocument

	Default Data
	Database Instance
	Exports
	Notes
	Imports
	Advanced Interface
	FieldMapper Interface
	Default Data
	Database Instance
	Export
	Imports
	Interfaces
	LegacyCMS
	StackDetails
	ExecutionLog
	Project
	ProjectDocument

	Default Data
	Database Instance

	Interfaces
	1. User
	2. AppTokenPayload
	3. LoginServiceType
	4. MigrationQueryType
	5. Locale

	Overview
	Endpoints
	1. User Login
	Example Request
	Example Response

	2. Request SMS Token
	Example Request
	Example Response

	Error Handling
	contentMapper.routes.ts
	Routes
	POST /createDummyData/:projectId
	GET /contentTypes/:projectId/:skip/:limit/:searchText?
	GET /fieldMapping/:projectId/:contentTypeId/:skip/:limit/:searchText?
	GET /:projectId/contentTypes/:contentTypeUid?
	GET /:projectId/globalFields/:globalFieldUid?
	PUT /contentTypes/:orgId/:projectId/:contentTypeId
	PUT /resetFields/:orgId/:projectId/:contentTypeId
	GET /:orgId/:projectId/content-mapper
	PATCH /:orgId/:projectId/mapper_keys
	Imports
	Router Initialization

	Route Definitions
	1. Start Test Migration
	
	2. Delete Test Stack
	3. Create Test Stack
	4. Start Final Migration
	5. Get Migration Logs
	6. Save Source Locales
	7. Save Mapped Locales

	Export
	org.routes.ts Documentation
	Overview
	Route Definitions
	1. Get All Stacks
	2. Create a New Stack
	3. Get All Locales
	4. Get Stack Status
	5. Get Stack Locales
	6. Get Organization Details

	Middleware

	Projects Routes (src/routes/projects.routes.ts)
	Imports
	Route Definitions
	GET /
	GET /:projectId
	POST /
	PUT /:projectId
	PUT /:projectId/legacy-cms
	PUT /:projectId/affix
	PUT /:projectId/affix_confirmation
	PUT /:projectId/file-format
	PUT /:projectId/fileformat_confirmation
	PUT /:projectId/destination-stack
	PUT /:projectId/current-step
	DELETE /:projectId
	PATCH /:projectId
	PATCH /:projectId/stack-details
	PUT /:projectId/migration-excution
	GET /:projectId/get-migrated-stacks

	Middleware

	User Routes (src/routes/user.routes.ts)
	Imports
	Route Definitions
	GET /profile

	src/services/contentful/jsonRTE.ts​​jsonRTE.ts
	Overview
	Configuration and Imports
	Types
	File Reading Utility
	Parser Map
	Main Entry Point
	UID Generation
	Node Parsers
	Document and Paragraphs
	Text and Marks
	Lists and List Items
	Headings
	Blockquote and Horizontal Rule
	Tables
	References and Assets
	Hyperlinks

	Extending the Parser
	Example Usage
	Notes

	Auth Service
	Dependencies

	Functions
	login(req: Request): Promise<LoginServiceType>
	Parameters
	Returns
	Throws
	Process
	Example

	requestSms(req: Request): Promise<LoginServiceType>
	Parameters
	Returns
	Throws
	Process
	Example

	Exported Object
	Error Handling
	src/services/contentful.service.ts​​Contentful Service
	Dependencies
	Functions
	getEntries(req: Request): Promise
	createEntry(req: Request): Promise
	updateEntry(req: Request): Promise
	deleteEntry(req: Request): Promise

	Exported Object
	Error Handling

	contentMapperService
	Overview
	Service Functions
	putTestData
	getContentTypes
	getFieldMapping
	getExistingContentTypes
	
	getExistingGlobalFields
	updateContentType
	resetToInitialMapping
	resetAllContentTypesMapping
	removeMapping
	removeContentMapper
	getSingleContentTypes
	getSingleGlobalField
	updateContentMapper

	Usage Example
	Error Handling

	extension.service.ts
	Dependencies
	Constants

	Functions
	writeExtFile({ destinationStackId, extensionData })
	getExtension({ uid, destinationStackId })
	createExtension({ destinationStackId })

	Exported Object
	extensionService

	Error Handling
	Notes
	marketplace.service.ts
	Imports
	Constants
	Helper Functions
	groupByAppUid(data: any): object
	removeKeys(obj: object, keysToRemove: string[]): object
	writeManifestFile({ destinationStackId, appManifest })

	Main Function
	createAppManifest({ destinationStackId, region, userId, orgId })

	
	Exported Service

	Example Usage
	Notes
	Migration Service
	createTestStack
	deleteTestStack
	startTestMigration
	startMigration
	getLogs
	createSourceLocales
	updateLocaleMapper
	Exported Service
	Error Handling
	Dependencies

	org.service.ts
	Dependencies

	Functions
	getAllStacks
	createStack
	getLocales
	getStackStatus
	getStackLocale
	getOrgDetails

	Error Handling
	Export
	Usage Example
	Project Service (projects.service.ts)
	Overview
	Service Functions
	getAllProjects
	getProject
	createProject
	updateProject
	updateLegacyCMS
	updateAffix
	affixConfirmation
	updateFileFormat
	fileformatConfirmation
	updateDestinationStack
	updateCurrentStep
	deleteProject
	revertProject
	updateStackDetails
	updateContentMapper
	updateMigrationExecution
	getMigratedStacks

	Error Handling
	Logging
	Exports

	Usage Example
	Notes
	Usage
	Sitecore Service (sitecore.service.ts)
	Dependencies

	Exported Service Methods
	1. createEntry
	2. createAssets
	3. createLocale
	4. createVersionFile

	Helper Functions
	idCorrector
	uidCorrector
	AssetsPathSplitter
	mapLocales
	writeFiles and writeOneFile

	Directory Structure
	Logging
	Error Handling
	Export
	User Service (user.service.ts)
	Overview
	Dependencies
	Functions
	getUserProfile

	Error Handling
	Usage Example
	Exports

	WordPress Service
	Overview

	Modules and Functions
	Locale Management
	createLocale(req, destinationStackId, projectId, project)

	Asset Management
	getAllAssets(affix, packagePath, destinationStackId, projectId)
	createAssetFolderFile(affix, destinationStackId, projectId)

	Reference Management
	getAllreference(affix, packagePath, destinationStackId, projectId)

	Chunk Management
	extractChunks(affix, packagePath, destinationStackId, projectId)

	Author Management
	getAllAuthors(affix, packagePath, destinationStackId, projectId, contentTypes, keyMapper, master_locale, project)

	Content Type Management
	extractContentTypes(projectId, destinationStackId)

	Term, Tag, and Category Management
	getAllTerms(affix, packagePath, destinationStackId, projectId, contentTypes, keyMapper, master_locale, project)
	getAllTags(affix, packagePath, destinationStackId, projectId, contentTypes, keyMapper, master_locale, project)
	getAllCategories(affix, packagePath, destinationStackId, projectId, contentTypes, keyMapper, master_locale, project)

	Post Management
	extractPosts(packagePath, destinationStackId, projectId, contentTypes, keyMapper, master_locale, project)

	Global Fields Management
	extractGlobalFields(destinationStackId, projectId)

	Version File Management
	createVersionFile(destinationStackId, projectId)

	Helper Functions
	Exported Service
	Usage Example

	async-router.utils.ts
	Overview
	Usage
	API
	asyncRouter
	Parameters
	Returns
	Example

	Implementation
	Notes
	auth.utils.ts
	Overview
	Function Signature
	Parameters
	Returns
	Throws
	Example Usage
	Implementation Details

	Content Type Creator Utilities
	Interfaces
	Group
	ContentType

	Helper Functions
	extractFieldName(input: string): string
	extractValue(input: string, prefix: string, another: string): any
	startsWithNumber(str: string): boolean
	uidCorrector({ uid }: any): string

	Schema Conversion
	arrangGroups({ schema, newStack }: any): any[]
	convertToSchemaFormate({ field, advanced = true, marketPlacePath }: any): any

	File Operations
	saveAppMapper({ marketPlacePath, data, fileName }: any): Promise<void>
	saveContent(ct: any, contentSave: string): Promise<void>
	writeGlobalField(schema: any, globalSave: string): Promise<void>

	Content Type Processing
	existingCtMapper({ keyMapper, contentTypeUid, projectId, region, user_id }: any): Promise<any>
	mergeArrays(a: any[], b: any[]): Promise<any[]>
	mergeTwoCts(ct: any, mergeCts: any): Promise<any>

	Exported Function
	contenTypeMaker
	Parameters
	Workflow

	api/src/utils/custom-errors.utils.ts
	Custom Error Utilities
	AppError
	NotFoundError
	BadRequestError
	DatabaseError
	ValidationError
	InternalServerError
	UnauthorizedError
	S3Error
	ExceptionFunction

	Custom Logger Utility
	Features
	Exports
	customLogger(projectId: string, apiKey: string, level: string, message: string): Promise<void>

	
	Internal Utilities
	safeJoin(basePath: string, ...paths: string[]): string
	fileExists(path: string): Promise<boolean>

	Example Usage
	Security Notes
	
	Dependencies
	Error Handling

	entries-field-creator.utils.ts
	Dependencies
	Helper Functions
	startsWithNumber
	uidCorrector
	attachJsonRte
	unflatten
	htmlConverter
	getAssetsUid
	flatten
	findAssestInJsoRte

	
	Main Export
	entriesFieldCreator
	Description
	Parameters
	Returns

	field-attacher.utils.ts
	Imports

	fieldAttacher Function
	Signature
	Description
	Parameters
	Returns
	Workflow

	get-project.utils.ts
	Overview
	Function Signature
	Parameters
	Returns
	Throws
	Dependencies
	https.utils.ts
	Overview
	Usage
	Type Definitions
	httpType

	Function
	Default Export

	Implementation Notes

	Utils Module (api/src/utils/index.ts)
	throwError
	isEmpty
	safePromise
	getLogMessage
	copyDirectory
	createDirectoryAndFile
	getAllLocales
	Dependencies
	src/utils/jwt.utils.ts
	Dependencies
	Function: generateToken
	Parameters
	Returns
	Usage Example
	Configuration Requirements
	Notes

	Overview
	Implementation
	Usage
	Configuration Details

	api/src/utils/lowdb-lodash.utils.ts
	Overview
	Imports
	Class: LowWithLodash<T>
	Description
	Type Parameters
	Properties
	Example Usage​
	Implementation

	Notes
	Exports

	market-app.utils.ts
	Dependencies

	Functions
	1. getAllApps
	Signature
	Parameters
	Returns
	Example Usage
	Notes

	2. getAppManifestAndAppConfig
	Signature
	Parameters
	Returns
	Example Usage
	Notes

	Error Handling
	Host Selection
	Example
	pagination.utils.ts (src/utils/pagination.utils.ts)
	Overview
	Function: fetchAllPaginatedData
	Signature
	Parameters
	Returns
	Usage Example
	How It Works
	Error Handling
	Dependencies
	Notes

	sanitize-path.utils.ts
	sanitizeFilename(filename: string): string
	getSafePath(inputPath: string, baseDir?: string): string

	test-folder-creator.utils.ts
	Exports
	testFolderCreator({ destinationStackId })

	Internal Utilities
	writeOneFile(indexPath, fileMeta)
	writeFiles(entryPath, fileMeta, entryLocale, locale)
	startsWithNumber(str)
	uidCorrector({ uid })
	saveContent(ct, contentSave)
	cleanDirectory(folderPath, foldersToKeep)
	deleteFolderAsync(folderPath)
	lookForReference(field, finalData)
	sortAssets(baseDir)
	writeGlobalField(schema, globalSave, filePath)
	sortGlobalField(baseDir, finalData)

	watch.utils.ts
	Exports
	watchLogs(sourceFile: string, destinationFile: string): Promise<void>

	Internal Functions
	mergeLogs(destinationFile: string, sourceFile: string): Promise<void>

	affix-confirmation.validator.ts
	Overview
	Validation Rules
	Usage Example
	Returned Value

	auth.validator.ts
	Overview
	Validation Rules
	email
	password
	region
	tfa_token (optional)

	Usage Example
	Returned Value

	cms.validator.ts
	Overview
	Validation Rules
	Usage Example
	Returned Value

	destination-stack.validator.ts
	Overview
	Validation Rules
	Usage Example
	Returned Value

	file-format.validator.ts
	Overview
	Validation Rules
	Usage Example
	Returned Value

	fileformat-confirmation.validator.ts
	Overview
	Validation Rules
	Usage Example
	Returned Value

	index.ts
	Overview
	Supported Validators
	Usage Example
	How It Works
	Error Handling

	project.validator.ts
	Overview
	Validation Rules
	Usage Example
	Returned Value

	stack.validator.ts
	Overview
	Validation Rules
	Usage Example
	Returned Value

	database.ts
	Overview
	Function: connectToDatabase
	Signature
	Description
	Example Usage

	Error Handling

	server.ts
	Overview
	Key Features
	Middleware Stack
	API Routes
	Real-Time Log Streaming
	Example: Listening for Log Updates on the Client

	Dynamic Log File Path
	Server Startup

